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A B S T R A C T

Small signals may contain important information. Mass spectra of chemical compounds are usually given in a
format of sparse high-dimensional data of large dynamic range. As peaks at high m/z (mass to charge ratio) region
of a mass spectrum contribute to sensory information, they should not be ignored during the dimensionality
reduction process even if the peak is small. However, in most of dimensionality reduction techniques, large peaks
in a dataset are typically more emphasized than tiny peaks when Euclidean space is assessed. Autoencoders are
widely used nonlinear dimensionality reduction technique, which is known as one special form of artificial neural
networks to gain a compressed, distributed representation after learning. In this paper, we present an autoencoder
which uses IS (Itakura-Saito) distance as its cost function to achieve a high capability of approximation of small
target inputs in dimensionality reduction. The result of comparative experiments showed that our new autoen-
coder achieved the higher performance in approximation of small targets than that of the autoencoders with
conventional cost functions such as the mean squared error and the cross-entropy.

1. Introduction

The use of machine learning has spread widely over various fields in
the last decade. Above all, the so-called ‘deep learning’method emerging
at the beginning of 2000's has shown great impacts in many cognitive
computing applications [1], such as image recognition and speech
recognition. In these successful applications, dimensionality reduction,
which compresses higher dimensional data into manageable lower
dimensional data, plays a fundamental role as redundancy in the input
hurts the performance. An autoencoder, regarded as one special form of
artificial neural networks, is known as one of the promising techniques of
nonlinear dimensionality reduction [2]. By an autoencoder, the dimen-
sionality of input data is reduced to a smaller dimensionality at the
hidden layer as the number of the neurons in the hidden layer is smaller
than that of input layer. Previous studies reported that autoencoder with
nonlinear characteristic is more suitable than linear dimensionality
reduction techniques such as PCA (Principal Component Analysis) when
the data to be handled have nonlinear structure [3,4].

Learning process of neural networks can be converted into the
problem of minimizing the cost function, the distance between the target
signal and the output of the neural network. The cost function between
the input and the target signals is minimized by optimizing a set of pa-
rameters in the network. For cost function, MSE (Mean Squared Error)

and CE (Cross Entropy) are well known and have been used in a variety of
machine learning systems so far [5]. However, it should be noted that
these cost functions are mainly aimed to capture the large features in the
target dataset. On the other hand, IS distance, a distance based on a
logarithmic scale, is known as the distance which reflects perceptual
similarity [6].

The Mass spectrum is one of the representative physicochemical
properties of chemical substances. The dynamic range of mass-spectrum
data is very large, however tiny peaks in the mass spectrum should not be
ignored since it was argued that these peaks may affect our olfactory
perception [7]. The Previous study showed a successful dimensionality
reduction technique using IS distance based Non-negative Matrix
Factorization [8,9]. In the IS distance, the meaningful tiny peaks can
contribute to the distance, whereas they tend to be ignored in the
Euclidean distance. Thus, IS distance is more sensitive to intensities near
0. This characteristic of IS distance is preferable to the other distance
metrics for our application such as mass-spectrum approximation since it
is suggested the small peaks in mass spectrum of a chemical at high m/z
region contribute to its odor character [7].

As peaks in low m/z region mainly originated from typical molecules
with lowmolecular weights, they could be much larger than those in high
m/z region. However, these peaks are not important for our olfaction as
they are molecules with relatively high human threshold. Although peaks
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in high m/z region are relatively smaller than those in low m/z region,
they could contain more important information for olfaction therefore
they should be utilized. The molecules of large molecular weights which
have relatively low human threshold tend to contribute to small peaks in
high m/z region. Thus, an accurate approximation of small values in
feature vectors would be quite useful to applications such as odor char-
acter prediction from its mass spectra [10].

Motivated by these backgrounds, we studied an autoencoder based
upon IS distance. This paper presents an autoencoder with IS distance as
cost function and compares the results of experiments on dimensionality
reduction with those of the Euclidean and cross entropy distances to
show the improvement in reproduction of small values in target dataset.

2. Cost functions

Backpropagation algorithm is one of the well known methods to train
artificial neural networks including autoencoders [2]. In the algorithm,
gradients of a cost function are calculated with respect to the weights and
the biases in the network for the purpose of minimizing the cost function.
Gradients should be iteratively calculated for each layer so that the
gradient descent method can optimize the weights in the entire network.

Then, we firstly derived a gradient of IS distance with respect to
weights and biases. Letting y be a target signal, an element of original
spectrum, given to an autoencoder and f ðzÞ be an output of sigmoid
function on input value z, an element of reproduced spectrum, the cost
function based on IS distance EIS is given by the following equation [6],

EIS ¼ y
f ðzÞ � ln

y
f ðzÞ � 1; (1)

MSE (Mean squared error) and CE (Cross entropy) are quite common
cost functions and are used in artificial neural networks in most cases.
The cost functions of MSE and CE are given by the following equa-
tions [5].

EMSE ¼ 1
2
ðy� f ðzÞÞ2; (2)

ECE ¼ y ln f ðzÞ þ ð1� yÞlnð1� f ðzÞÞ: (3)

Fig. 1 shows how each cost function evaluates the distance between
the two values. f ðzÞ and y are changed from 0 to 1 with a step size of 0.01.
As shown in Fig. 1c and f, IS distance changes drastically when values are
near 0, compared with the distances given by other cost functions.

Then, we calculated a gradient of each cost function with respect to
the weights. With the chain rule of differential, the gradient of IS cost
function, ∂EIS∂w , can be described as,

∂EIS

∂w
¼ ∂EIS

∂f ðzÞ
∂f ðzÞ
∂z

∂z
∂w

; (4)

Although the derivation here is just for a scalar value, it can be
applied to every weight. When the sigmoid function, f ðzÞ ¼ 1

ð1þ expð� zÞÞ,
is used as the activate function of a network, each term in the right side of
this equation can be described as,

∂EIS

∂f ðzÞ ¼ � y

f ðzÞ2 þ
1

f ðzÞ ; (5)

∂f ðzÞ
∂x

¼ f ðzÞð1� f ðzÞÞ; (6)

∂z
∂w

¼ x; (7)

where z ¼ wx. Thus, Equation (4) is now rewritten as

∂EIS

∂w
¼

�
1� y

f ðzÞ
�
ð1� f ðzÞÞx: (8)

Fig. 1. Plots of distance between f ðzÞ and y calculated on three cost functions. Colors in each figure change depending on the magnitude of distance. (a) Mean squared error,
Azimuth ¼ 45�, Elevation ¼ 30�, (b) Cross Entropy, Azimuth ¼ 45�, Elevation ¼ 30� (c) Itakura-Saito distance, Azimuth ¼ 45�, Elevation ¼ 30�, (d) Mean squared error, Azimuth ¼ 315�,
Elevation ¼ 0�, (e) Cross Entropy, Azimuth ¼ 315�, Elevation ¼ 0� (f) Itakura-Saito distance, Azimuth ¼ 315�, Elevation ¼ 0�. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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