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Soft sensors are widely employed in industry to predict quality variables, which are difficult to measure online, by
using secondary variables. To build an accurate soft sensor, a proper variable selection is critical. In this project, a
method of selecting the optimal secondary variables for a soft sensor model is proposed. It is formulated as a
nested optimization problem. In each iteration, a mixed integer quadratic programming (MIQP) is conducted with
the Bayesian information criterion (BIC) to estimate the prediction error. A warm start (WS) technique is
developed to speed up the convergence. The proposed method is evaluated using a number of instances from the
UCI Machine Learning Repository. The computational results demonstrate that this method is well suited for
finding the best variable subsets. The method is successfully applied to build soft sensors for an industrial
distillation column. The results show that the proposed method can effectively select feature variables that will
improve the model prediction performance and reduce the model complexity. Comparisons with other methods,

Variable selection
Mixed integer quadratic programming
Bayesian information criterion

including the traditional partial least square technique, are also presented.

1. Introduction

With the development of production technology, modern chemical
processes have become increasingly stricter in terms of product quality.
To properly control the product quality, it is necessary to measure the
product quality online. Unfortunately, there are a large number of cases
where quality variables cannot be detected online by conventional
hardware sensors for economic or technical reasons. The soft sensor
technique, therefore, becomes an attractive approach to address this
problem. The soft sensor technique utilizes easily measurable process
variables, the so-called secondary variables, to estimate primary vari-
ables on-line by constructing a mathematical relationship between sec-
ondary variables and quality variables [1-3].

It is well known that a proper modeling method is essential for
developing a soft sensor with good performance. Techniques such as
multiple linear regression (MLR), principal component regression (PCR),
partial least squares (PLS), artificial neural networks (ANN) and support
vector regression (SVR) have been well reported [4-11] for the devel-
opment of soft sensor models. However, the effectiveness and maturity of
a soft sensor model are likely to be achieved only if those secondary
variables that are most closely related to the primary variables are
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employed. With increasingly more industrial data becoming available in
chemical processes, it is challenging to determine what data should be
used in the soft sensor model. Furthermore, the inappropriate selection of
secondary variables in a model may lead to many problems such as dif-
ficulties in model explanation and parameter estimation. Moreover,
redundant variables in a model may lead to overfitting and therefore
poor prediction for new data not used in the model training. Therefore,
variable selection, though not as well studied as modeling techniques, is
also critical for developing soft sensors. With a proper variable selection,
we can not only improve model predictive performance but also simplify
the model complexity and ease the model interpretation.

The variable selection in a soft sensor can be regarded as the best
variable subset selection, which has been proved to be an NP-hard
problem. Guyon et al. [12] categorized variable subset selection
methods into three methods: filter, wrapper and embedded methods.
Filter methods select a variable subset based on a ranking criterion. A
commonly used filter method is the correlation criterion, which com-
putes the importance of every variable independently by comparing the
correlation between every variable and the dependent variable [13].
However, the filter methods always lead to the selection of a redundant
subset. The same model performance could be achieved with a smaller
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subset of variables selected by wrapper methods or embedded methods.
Wrapper methods evaluate the subsets based on the model prediction
performance on a validation set and search the space of possible variable
subsets according to the predefined search algorithm until satisfactory
prediction performance is achieved [14]. Commonly used search algo-
rithms include genetic algorithms and simulated annealing algorithms.
These algorithms are often criticized for their massive amounts of
computation. Thus, heuristic search strategies have been devised. Among
them, the stepwise regression method is a well-known method due to its
computational advantages. The stepwise regression method repeats for-
ward selection and backward elimination until a stopping criterion is
satisfied. However, this method sacrifices prediction performance; it
cannot find an optimal variable subset. In contrast to wrapper methods,
embedded methods can simultaneously select variable subsets during
model construction [15]. Embedded methods optimize a two-part
objective function with a goodness-of-fit (GOF) term and a penalty
term for a large number of variables directly. Typical methods include
the least absolute shrinkage and selection operator (LASSO) [16], the
smoothly clipped absolute deviation (SCAD) penalty [17], the minimax
concave penalty (MCP) [18], and mixed integer programming (MIP). The
LASSO technique uses a squared objective function that is penalized by a
function of the magnitude of the regression coefficients to perform var-
iable selection. However, it results in far less accurate solutions, likely
due to the highly-correlated variables. SCAD can produce sparse set of
solution; but the coefficients are biased for large coefficients. Similarly,
MCP is also biased though it is fast and continuous. The MIP method has
the potential to select the best variables and is unbiased. The MIP has
been widely used in optimal design and operation in process systems
engineering [19-21]. For variable selection, however, only a few publi-
cations have been reported that formulate the subset selection problem as
a mixed integer quadratic programming (MIQP) problem by minimizing
the sum of squared model deviations. In particular, Bertsimas et al. [22]
developed a tailored branch-and-bound procedure to solve the MIQP
problem. Konno et al. [23] employed the mean absolute model deviation
as an objective function and formulated the variable selection problem as
a mixed integer linear programming (MILP) problem, which is easier to
solve than the MIQP problem. However, both the MIQP and MILP
methods need to predetermine the number of selected variables before
solving them. Otherwise, most or all the candidate variables will even-
tually be included in the model because the more complicated the model
is, the more accurately it fits during training. Therefore, it is not appro-
priate to use the sum of squared model deviation or mean absolute model
deviation as the GOF measure; it is necessary to find a more effective GOF
measure to estimate the true prediction error of variable subsets.

Some classical GOF measures, such as the Akaike information crite-
rion (AIC) [24], Bayesian information criterion (BIC) [25] and Mallows'
Cp [26], have been proposed for estimating the true prediction error.
Emet et al. [27] studied model structure selection for minimizing the AIC.
This problem is computationally intractable due to its nonlinearity and
nonconvexity. They noted that, if the residual variance is known or
predefined, the model structure selection problem for minimizing the
AIC can be reduced to an MIQP problem with a convex and nonlinear
objective function. However, this conflicts with the formal definition of
the AIC, which requires the residual variance to be the maximum like-
lihood estimation. Miyashiro et al. [28] proposed an MIQP formulation
for subset selection using Mallows' C;, as the objective function. This
method enables one to find the best subset of variables in terms of
Mallows' C,. However, it may also result in redundant variables because
the penalty term in Mallows' C;, is not sufficiently large.

In this paper, an efficient and computationally tractable method is
proposed for selecting the best secondary variables in soft sensor devel-
opment. To improve the model prediction ability while maintaining
adequate model simplicity, the variable selection task is conducted
through a set of optimization problems. In each step, the preset subset
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dimension is incremented by one, and an MIQP problem is solved to
select the best variable subset. Then, the BIC is applied to estimate the
model true prediction error and determine the termination of the selected
variable subset. Examples from UCI datasets are used to evaluate the
proposed method. An application to develop the soft sensor for an in-
dustrial distillation column composition is also presented.

2. Multiple linear regression model and BIC

Multivariate statistical methods [4] are widely used to derive
regression models such as the MLR model, PCR model and PLS model.
Among them, the MLR model has attracted numerous studies in variable
selection, especially normal linear regression models, due to their
analytical expression convenience.

MLR model attempts to model the relationship between independent
variables and a dependent variable by fitting a linear equation to given
data. Given n samples (X1, X2, -=Xjp;¥i), fori=1,2, --n, x5 j=1,2, -,
p) are p candidate independent variables, and y; is a dependent variable.
A MLR model is constructed for predicting the output y as follows:
y=b+ax;+ax; + - +ayx,+¢ 6~N,,(0,0'21) 1)
where ¢ is a prediction residual, which is random, independent, and
identically distributed with zero mean and unknown variance o2, and b
and q; (j = 1,2, -+, p) are p+ 1 unknown parameters to be estimated.

For convenience of explanation, we rewrite the model (1) as

y=Xa+e 2
where

Y1 b €1 I xp Xip
y= y:2 a=| Y |e= 6‘:2 X = 1: x?l x?,,

Yn ap &n 1 Xn1 xnp

The variable selection problem is to determine a subset of variables
{x1, X2, --xx}, k<p from all the candidate independent variables. There
are a total of 2?— 1 possible different combinations. Therefore, it is
necessary to evaluate each subset regression model using some GOF
measures and select the variables closest to the true model.

For a prediction model, the major task is to predict unknown data.
The quality of the established model should be evaluated according to its
generalization performance. Therefore, the prediction error for test data
should be of concern instead of the error for the training data when
evaluating a prediction model.

It is well known that a model is always highly fitted to the training
data compared to the validation data. Therefore, the expected error for
the validation data will be higher than the error for the training data. As
the model complexity increases, the training error always decreases.
However, simultaneously, overfitting can easily occur if we simply focus
on the training error. Although it is impossible to measure the true pre-
diction error precisely, there are several methods to estimate the ex-
pected validation error with good accuracy. An obvious way to estimate
the prediction error is to calculate the model complexity and then add it
to the model training error. For a linear model, the model complexity
represents the number of variables in the model. It is well known that a
generalized information criterion (GIC), such as the AIC, the BIC and
Mallows' Cp, works in this way to estimate the true prediction error
as follows:

GIC = |ly — Xa||* +yp (©)]

where ||-|| denotes the Euclidean norm of a vector, p is the number of
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