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A B S T R A C T

Soil property analysis is indispensable in precision agriculture, an advanced field regarding site-specific man-
agement for crop production enhancement and environmental sustainability. Because of the difficulties in soil
sample collection and measurement of soil properties, such as moisture content, total carbon, total nitrogen,
electricity, and pH, near-infrared (NIR) spectroscopy is a useful technique to predict soil properties by using
statistical learning methods. However, the prediction of soil properties without any knowledge about how
different variables might influence their behavior is not adequate. Soil properties differ depending on location and
environment. The variability within the same area could cause nonlinearity on a global scale. Therefore, to
determine which method and strategy are suitable for this task, the detection of nonlinearity between NIR
spectroscopy and soil properties is the main purpose of this study. Various numerical tools and graphical methods
were applied to this soil property dataset, such as variable selection, sample splitting, applicability domain
evaluation, and residual inspection. Global nonlinearity for all five soil properties was confirmed, and the strength
of such nonlinearities was found to be property dependent.

1. Introduction

Precision agriculture is an advanced concept used to accomplish site-
specific management based on developed decision support system [1]. It
includes observing, measuring, and collecting information from crops,
soils, and other conditions. By using site-specific knowledge, one can
precisely apply fertilizer, water, and other chemicals to a particular
location [2]. The goal of precision agriculture is to improve the pro-
duction rate and quality of crop yields and to keep it sustainable and
environment friendly [3]. One main aspect of precision agriculture is
gathering soil samples and making a decision support map [2]. Because
soil sample collection consumes a large cost, an alternative approach that
indirectly predicts soil properties reveals itself a promising
research topic.

near-infrared (NIR) spectroscopic measurement is quite convenient,
because no special preparation of samples is needed. Thus, NIR data
collection for soil samples can be done on-site. In the present study, a
framework for soil property prediction based on NIR spectra was devel-
oped using statistical learning methods. Various studies have shown that
the use of NIR spectra is feasible to predict the following soil properties:
moisture content, total carbon, total nitrogen, electrical conductivity,
and pH [4–6]. Linear regression and partial least squares (PLS) methods

were already applied to determine the soil properties. Additionally,
variable selection is an important part of NIR spectra calibration.
Knowledge-based selection is a manual approach. PLS could be combined
with other various variable selection methods such as stepwise, boot-
strap, moving window, and forward/backward interval methods [7].
Genetic algorithm (GA) is another commonly used approach [7].
Removal of uncorrelated variables promotes the investigation of corre-
sponding chemical substances based on optimized variables. Improving
prediction ability is another purpose of using NIR spectroscopy.

There are other obstacles, however, when using this technique for
real soil property prediction. We still do not know the inner deep rela-
tionship between NIR spectra and soil properties, because soil property
differs depending on the area. More specifically, linearity or nonlinearity
is the first issue that should be considered. For real case, it is unwise to
use a linear method to predict nonlinearity data. Therefore, a deeper
insight into the relationship approximated by models is the main topic of
this study.

In addition to PLS, a well-known nonlinear regression method called
support vector regression (SVR) can be applied to NIR spectroscopy, as
reported by Thissen et al. [8]. Local strategy is another approach when
dealing with nonlinearity [9,10]. Constructing a local model according to
the local dataset might be more suitable for specific test data. We applied
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global and local strategies for linear method PLS and nonlinear method
SVR to predict the aforementioned five soil properties. For model supe-
riority comparison, conventional root mean square of prediction
(RMSEp) and a model comparison statistic called randomization t-test
[11] were applied to this study.

Wavelength selection is a graphical technique used to investigate the
(non)linearity between NIR wavelength and objective variables. H.Ara-
kawa and K.Funatsu developed a GA-based wavelength selection
(GAWLS), which uses regional variable selection to make it more suitable
for NIR spectra calibration [5]. Nonlinear regression method could also
be used as the fitness function in GA, one application is nonlinear
regional variable optimization method (GAWLS-SVR) [12]. If nonline-
arity exists, optimized variables found using each method should
be different.

For regression analysis, applicability domain (AD) evaluation is
essential. By using specific criteria to estimate prediction errors such as
data similarity and distance, we can know how a model will perform for
new data [13,14]. AD evaluation based on ensemble learning was pro-
posed and reported to be appropriate for regression methods [15–18].
Small variance usually suggests small error; therefore, using standard
deviation obtained from predicted values to estimate prediction error is
an interesting approach. In this study, GAWLS and GAWLS-SVR were run
multiple times for predicting each sample; thus, they are applicable to AD
comparison.

By comparing various results, one can represent only the trend or
indication of nonlinearity. A nonlinearity detection method based on PLS
model was already proposed, which has become a universal tool [19],
where plotting residuals against latent variables is used to inspect which
latent variable contributes to PLS fitness. Moreover, the Durbin–Watson
(D–W) test evaluates the residual prediction errors and reports on line-
arity, nonlinearity, or inconclusiveness [19–21].

2. Review on chemometric methods

Before introducing the data to be used and regression modeling re-
sults, some basic concepts of chemometric methods are briefly explained
in this section. PLS and SVR methods were the two basic algorithms used
in this study. These two methods were combined with various chemo-
metric tools.

2.1. PLS

A Swedish statistician HermanWold introduced the PLS method; then
his son, Svante Wold, developed it [22]. PLS is a regression method that,
different from multiple linear regression (MLR), determines multiple
hyperplanes of maximum variance between the explainable variables (X)
and objective variables (Y). PLS projects both X and y to latent space,
where the amount of information between X and y is defined by their
covariance. Generally, y is a column vector, PLS1 is a widely used al-
gorithm for the vector y case [23],

X ¼
XA
i¼1

tapT
a þ E ¼ TPT þ E (1)

y ¼
XA
i¼1

taqaþf ¼ Tqþ F (2)

where A is the number of latent variables, T is the projection matrix of X,
P is an orthogonal loading matrix, q is a coefficient, and matrices E and F
are the error terms. Latent variable t plays a very important role in PLS
algorithm because it is determined by the linear combination t¼Xw,
where w is a d�1 weight vector, and its norm is 1.

When the sum of squares of error terms E and F is minimal, the
loading matrix P and coefficient q are given as follows

P ¼ XTt
�
tTt (3)

q ¼ yTt
�
tTt (4)

If the next latent variables,Xnew and ynew, are necessary, then they are
calculated using the following equations:

Xnew ¼ X� tp (5)

ynew ¼ y� tq (6)

One of the most important advantages of PLS is that it can treat data
with more variables than observations, which cannot be accomplished by
MLR. The more the latent variables are used, the more accurate is the
model for training samples. However, its generalization ability for other
test samples would be decreased considerably, which is called over-
fitting. In general, the number of latent variables is decided by cross-
validation. By randomly separating training samples into several folds,
the properties of one fold are predicted by a PLS constructed by the
remaining folds. The number of latent variables is decided according to
the minimum prediction error obtained. Although the original applica-
tions of PLS were in social science, today PLS regression is more widely
used in chemometrics.

2.2. SVR

In machine learning, support vector machine (SVM) is a well-known
supervised learning method that is already widely applied in classifica-
tion and regression analysis. The original motivation of SVM was initi-
ated from binary classifier. The application of SVM to regression problem
was proposed by Vladimir N. Vapnik [24]. In linear regression problem, a
regularized error function could be minimized by

1
2

XN
n¼1

fyn � tng2 þ λ

2
jjwjj2 (7)

In SVR, this quadratic error function is replaced by a ε-insensitive
error function for a sparse solution; if the absolute difference between the
prediction y and the target t is less than ε, then the error is considered
zero. Thus, we can minimize a regularized error function as follows:

C
XN

n¼1
EϵðyðxnÞ � tnÞ þ 1

2
jw2j (8)

where y(xn)¼wTφ(x)þb, φ(x) denotes the fixed feature space trans-
formation, and C is the regularization parameter. Then, by introducing
the Lagrange multipliers and minimizing the error function, we set the
derivative of the Lagrangian with respect to w,

w ¼
XN
n¼1

ðan�banÞϕðxnÞ (9)

Predictions for new inputs can be made by substituting Eq. (9) in
y(xn)¼wTφ(x)þb

yðxnÞ ¼
XN

n¼1

�
an � ban

�
kðx;xnÞþb (10)

which is expressed in terms of a kernel function, k(x,xn)¼φ(x0)Tφ(x). The
parameter b can be determined by considering a data point that lies on
the error tube, which has ξn¼ 0; therefore, it satisfies εþ yn�tn¼ 0. Using
(10) hen, b can be determined using the following equation:

b ¼ tn � ε � wTϕðxnÞ ¼ tn� ε �
XN
m¼1

�
am� âm

�
kðxn;xmÞ (11)

According to the corresponding Karush–Kuhn–Tucker (KKT)
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