
Determination of carbon and sulfur content in coal by laser induced
breakdown spectroscopy combined with kernel-based extreme
learning machine

Chunhua Yan a, Juan Qi a, Junxiu Ma a, Hongsheng Tang a, Tianlong Zhang a,**, Hua Li a,b,*

a Institution of Analytical Science, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
b College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China

A R T I C L E I N F O

Keywords:
Laser-induced breakdown spectroscopy
Kernel-based extreme learning machine
Coal
Carbon
Sulfur

A B S T R A C T

The carbon and sulfur content is an important index of coal property. In the present work, kernel-based extreme
learning machine (K-ELM) model was built and applied to laser induced breakdown spectroscopy (LIBS) to
improve the quantitative analysis accuracy of carbon and sulfur in coal. The different preprocessing techniques,
input variables and model parameters were optimized by 5-fold cross validation to find which combination can
provide an appropriate calibration model. Then the optimized K-ELM model was applied to quantitative analysis
of carbon and sulfur content in coal, and a comparison with support vector machine (SVM), least squares support
vector machine (LS-SVM) and back propagating artificial neutral net (BP-ANN) was carried out. The three
quantitative techniques were evaluated in terms of Root Mean Square Error (RMSE) and correlation coefficients
(R2). The results show that K-ELM model has excellent performance compared to the others both in calibration
and prediction set, and the optimum results of the K-ELM model were achieved with RMSE ¼ 0.3762%,
R2 ¼ 0.9994 for C and RMSE ¼ 0.7704%, R2 ¼ 0.9832 for S in the prediction set. The overall results sufficiently
demonstrate that LIBS coupled with K-ELM method has the potential to measure carbon and sulfur content in coal,
and is a promising technique for real-time online, rapid analysis in coal industry.

1. Introduction

Coal is the major fossil energy resource in the world. It has been used
as an energy resource, primarily burned for the production of electricity
and heat, and is also used for industrial purposes, such as refining metals.
As the main composition of organic matter in coal, carbon is a major
indicator of coal quality, and can be used to rapidly estimate the calorific
value of coal. Sulfur is one of themajor and hazardous component of coal.
Sulfur dioxide (SO2) generated during coal combustion not only cause
the pipeline and equipments corrosion but also significantly threaten
human health and the global environment. In addition, C and S content
also influence the commodity prices and affect the chemical combustion
properties of coal. The accurate measurement of carbon and sulfur con-
tent in coal is contribute to help underpin the chemical assessment of fuel
commodities and decision about the suitability of coal [1]. Therefore, it is
necessary to develop an efficient method for determination of C and S
in coal.

A wide number of analytical techniques have been developed to
quantitative analysis of carbon and sulfur, such as volumetry [2], X-ray
fluorescence spectrometry (XRF) [3,4], UV–vis spectrometry [5,6], op-
tical emission spectrometry with inductively coupled plasma (ICP-OES)
[7–9] and mass spectrometry with inductively coupled plasma (ICP-MS)
[10–12]. All of these techniques, except for XRF, require complicated
sample preparation procedure including wet acid digestion, which is
certainly hinder their application in the case of mineral coal. While XRF
method has difficulties in analyzing light elements due to instrumental
limitations and low X-ray yields for the light elements. Laser induced
breakdown spectroscopy (LIBS) is an optical emission spectroscopy
technique with the capacity of fast, multi-elemental analysis, minimal
sample preparation, non-destructive analysis and in-situ analysis. These
characterization properties make LIBS become a very popular analytical
technique in many fields such as environment monitoring [13–15],
biomedical and pharmceutical analysis [16,17] and space explora-
tion [18–20].
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Since each element has its own set of emission lines, a appropriate
analytical method that can be used to quantitatively correlate the LIBS
spectral intensity of a specific peak with the elemental content. However,
the traditional linear methods may not completely present the relation-
ship between the LIBS spectral intensity and element content because of
the uncontrollable fluctuation of the experimental parameters, the in-
homogeneity of sample surface and physical and chemical matrix effects.
Therefore, it is necessary to develop and apply efficient multivariate
nonlinear analysis methods to overcome this problem. In recent years,
the chemometric methods such as support vector machines (SVM) [21],
random forest (RF) [22,23] and artificial neural network (ANN) [24,25]
have been extensively used in LIBS spectra for both quantitative and
qualitative analysis. However, these algorithms does involve some
inherent questions, which hinders their application in LIBS spectra. For
example, most traditional neural networks through a gradient descent
algorithm to update its parameters, which make the training process is
quite slow and it is easy to fall into local optimum. Therefore, many new
algorithms with respect to good generalization performance at extremely
fast learning speed have been proposed to overcome these shortcomings.

Extreme learning machine (ELM) [26] as a relatively new nonlinear
method, has shown its excellent performance in classification [27] and
regression [28] problems. Different from most learning algorithms with
gradient descent, ELM randomly initializes the weights and biases be-
tween the input layer and hidden layer, while the weights between the
hidden layer and output layer are selected by minimal norm least square
method. Therefore, ELM can effectively avoid the slow training speed
and over-fitting problems suffered by traditional neural network training
algorithms. Furthermore, it possesses similar high generalization per-
formance compared to other conventional learning algorithms such as
back propagation artificial neural network (BP-ANN) [29] and support
vector machine (SVM) [30]. However, ELM produces a large variation in
result with the same number of hidden nodes due to the randomly
assigned input weights and bias. A kernel-based extreme learning ma-
chine (K-ELM) [31] has been developed lately to solve this problem, and
in which the hidden layer of ELM was replaced with a kernel function.

In the present article, LIBS combined with K-ELM was used to mea-
sure carbon and sulfur content in coal. At first, the different pre-
processing techniques, input variables and model parameters were

studied in detail to find which combination can provide an appropriate
calibration model. Then, carbon and sulfur content in coal were
measured by K-ELM model and the results were compared with SVM, LS-
SVM and BP-ANN models. The performance of the four quantitative
techniques were evaluated by RMSE and R2 values.

2. Material and methods

2.1. LIBS setup

LIBS measurements were obtained using a 8 ns Q-switched Nd: YAG
laser (Beamtech Optronics Co., Ltd., Dawa-300) operating at 1064 nm,
with energy of 90 mJ and a maximum repetition rate of 10 Hz. The
sample was placed directly on an X-Y-Z manual micrometric stage. The
laser beam was focused on the sample surface using an objective with
50 mm of focal length to create the plasma, and the resulting ablating
spot diameter was 0.2 mm. Then the light emitted from the plasma was
collected through a collecting lens at a 45� angle with respect to the laser
beam, and an optical fiber was then delivered it to a spectrometer
(MX2500-3PLUS, Ocean Optics, USA) which is equipped with a CCD
camera. The delay time was set to be 3 μs and gate width was set to be
100 μs. All measurements were performed in air at atmospheric pressure.
The quantitative analysis of carbon and sulfur content in coal sample
were carried out using MATLAB (2010b).

2.2. Coal samples

Twenty-six coal standard samples from Jinan Zhongbiao Technolo-
gies Co Ltd in the form of powder were used in this study. Table 1 shows
the carbon and sulfur content of the coal samples. Each powdered sample
was pressed into a pellet with a pressure of 100 MPa for 5 min, and 20
different positions were randomly selected and measured for each pellet.
Furthermore, in order to reduce the influences of shot to shot fluctuations
and improve the signal-to-noise ratio, each measured spectrum was ob-
tained by the accumulation of 10 laser pulses. In this work, the analytical
spectra for each coal sample were the average of 20 spectra, and 26 (one
LIBS spectra for each coal sample) analytical spectra were acquired from
the 26 coal samples. Eighteen samples were randomly selected to

Table 1
The reference elemental content (wt.%) of the coal samples used in this work.

No. CRM-No. Sample-No. Carbon (%) Sulfur (%)

1a – ZBM091 79.70 1.93
2 – ZBM092 76.21 3.85
3a GSB06-2105-2007 ZBM095 81.44 0.35
4 GSB06-2106-2007 ZBM096 81.45 0.40
5 GSB06-2108-2007 ZBM098 78.50 1.70
6a GSB06-2109-2007 ZBM099 79.60 0.66
7 GSB06-2181-2008-1 ZBM100 47.02 1.40
8a GSB06-2181-2008-3 ZBM102 58.00 1.26
9 GSB06-2181-2008-4 ZBM103 59.40 2.90
10 GSB06-2181-2008-5 ZBM104 53.63 4.35
11a GSB06-2181-2008-6 ZBM105 53.43 6.45
12 GSB06-2110-2007 ZBM106 72.65 0.57
13 – ZBM107 80.00 1.54
14 GSB06-2111-2007 ZBM108 79.02 0.58
15 – ZBM109 70.90 0.45
16a GSB06-2112-2007 ZBM111A 74.16 0.81
17 GSB06-2112-2007 ZBM111B 72.05 0.88
18 GSB06-2114-2007 ZBM113 78.64 2.07
19 GSB06-2115-2007 ZBM114 74.70 0.27
20 GSB06-2116-2007 ZBM115 76.50 0.20
21a GSB06-2117-2007 ZBM120 77.28 0.42
22 GSB06-2118-2007 ZBM121A 75.34 0.50
23 – ZBM122 82.30 1.30
24 – ZBM123 79.77 0.51
25 – ZBM124 76.57 2.50
26a – ZBM130 80.79 0.87

a Selected for prediction sample.
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