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ARTICLE INFO ABSTRACT

Partial Least Squares (PLS) regression is the most widely used technique for developing NIR calibrations. PLS
uses several factors to reach the optimum models which can be helpful in a physical interpretation of the sources
of correlation between x and y variables. However, it suffers from later factors not arising in the order of the
explained variance. Canonical Correlation Analysis (CCA) overcomes this problem by selecting the latent
variables as the directions of maximum x-y correlation. Calibration of moisture, crude protein, dry gluten and
resistance of dough to deformation of wheat flour samples from NIR spectra is here studied using PLS-1, PLS-2,
CCA-1 and CCA-2. The calibration set contains 429 samples while 215 extra independent samples are used for
the validation set. It is shown that a 2-D CCA-2 calibration model gathers the highest explained variance between
the models studied. When particular calibration models of each property are compared, CCA requires
regularization to avoid instability of the regression coefficients. A regularization term that tends to reduce the
regression coefficients and the Durbin-Watson test or the Test for Runs to select the regularization parameter
have been used. Both statistical tests led to similar values of the regularization parameter and the resulting
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regression coefficients and RMSEP of the CCA-1 models became similar to those of the PLS-1 models.

1. Introduction

NIR spectroscopy is nowadays recognized as a valuable technique
for the quality control of very different materials (Davies and Garrido-
Varo [1]). Accuracy, precision, short time of analysis and limited
sample preparation are among the main advantages recognized to the
NIR spectroscopy. In addition to the specific characteristics of NIR
spectrometers, the development of calibration techniques has played a
key role in the expansion of NIR applications. Partial Least Squares
(PLS) regression (Wold [2,3]; Wold et al. [4]), first developed in the
field of econometrics in the 1960s by Wold, is the regression technique
commonly used for the prediction of quality parameters from the
spectral information provided by NIR spectrometers. This technique is
based on the assumption that the observed data of the dependent
variable are generated by a process driven by a small number of factors
or latent variables defined as the directions of maximum covariance
between both independent and dependent variables (Martens and Naes
[5]; Rosipal and Kramer [6]).

Commonly, robust and accurate PLS regression models require
several factors reflecting the multivariate dependence of the property
of interest. The study of the loadings of each factor allows the
identification of the factor and the splitting of the total variance in
the variance explained by each factor allows assessing the importance
of each factor in the model. However, as the number of factors

* Corresponding author.
E-mail address: gatius@quimica.udl.cat (F. Gatius).

http://dx.doi.org/10.1016/j.chemolab.2017.03.011

increases, a higher number of samples in the calibration and validation
sets are required in order to ensure a complete and accurate description
of the population of interest. Additionally, while we would like that the
importance of successive PLS factors decrease in terms of the explained
variance, it is found in some cases late PLS factors that show higher
explained variance than earlier ones. This behavior, although reason-
able in PLS-2, might suggest some inefficiency of the PLS-1 procedure.

Alternatively, there is another classical calibration procedure almost
unknown for most NIR users at least if we consider the NIR applications
reported in the literature. It is called Canonical Correlation Analysis
(CCA) and it is based on defining as latent variables the directions of
maximum correlation between the two sets of variables. CCA was
developed by Hoteling [7] for regression purposes. Using the correla-
tion as a driving force to define the latent variables, it ensures the
maximum explained variance in each factor, a result quite attractive for
determining the best model (Mardia et al. [8]). For the particular case
of only one y-variable being described in the calibration model, the
model is quite simple since only one factor is possible. As the explained
variance is maximized, the sum of squares of the residuals is minimum
and then the result coincides with that of multilinear regression (MLR).
It is then clear that CCA models for one y-variable suffer from some
drawbacks: instability in the regression coefficients and the need of a
larger number of samples than x-variables. These requirements are
overcome with the application of the so-called regularized CCA
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(Tikhonov et al. [9]; Guo and Mu [10]). In this case, which is the usual
in the application of NIR spectroscopy, the solution is looked as a
minimization of a least squares condition to which additional require-
ments called regularization factors are added to reduce the variance of
the parameter estimates. It seems interesting to test these models poorly
used in the development of NIR calibrations and to compare the
resulting results with those of PLS.

Thus, both PLS and CCA techniques will be used to develop NIR
calibration models of four quality parameters of wheat flour. Some
advantages and drawbacks of using these techniques will be discussed.
While PLS is a widely used technique to predict moisture and protein of
wheat (Pawlinski and Williams [11]) and wheat flour (Delwiche
[12,13]), CCA has never been applied to this kind of samples.

1.1. PLS and CCA principles

Let us introduce briefly PLS and CCA as minimization problems.

Let X and Y be the matrices of dimensions nxXp and nxgq
respectively, whose columns correspond to variables and whose rows
correspond to the samples (or experimental units). The vector x is the
kth column of the matrix X and contains the measurements of samples
on the independent variable x; centered with respect to the average of
each variable in the samples set. The vector y; is the jth column of the
matrix Y and contains the measurements of samples on the dependent
variable y;.

PLS focuses on the covariation between independent and dependent
variables and tries to find the new variables (called the PLS factors) that
maximize this parameter as is shown in Eq. (1):

max
WPLSx:WPLSy

PrLs = cov(Xwprsy, Ywprsy)

(€)]
where pprs is the maximum covariance. This equation is subject to the
constraint wl, gwprs; = 1 (i = x, y), where wpg, and Wprs, are the so
called PLS loading (weight) vectors. This operation can be performed by
means of the classical NIPALS algorithm (Martens and Naes [5]), but
also performing eigenvalue-eigenvector decomposition (Lindgren et al.
[14]). The maximum is achieved having wps,. and wps, as the largest
eigenvectors of the matrices X”Y Y'X and Y'X X"Y respectively. To
obtain subsequent weights, the algorithm is repeated with deflated X
and Y matrices (subtracting the contribution of each found PLS factor).

As Eq. (1) indicates, PLS factors are obtained ordered by decreasing
values of the covariance between the PLS factor and the y-variable
when only one y-variable is considered. This rank order can, then, be
altered when the PLS factors are ranked according to the respective
correlation (explained variance) to the y-variable. Notice that the
correlation depends not only on the covariance but also on the standard
deviation of the scores, this last influence being the responsible of
solutions of Eq. (1) ranking in different order according to correlation.

On the other hand, CCA can be seen as the problem of finding basis
vectors for two sets of variables such that the correlations between the
projections of the variables into such basis vectors are mutually
maximized. In other words, CCA consists in solving the problem of
finding the so called CCA loading normalized vectors weca, and wecay
that maximize the correlation between the linear combinations in both
X and Y subspaces:

max
WCCAx-WCCAy

Pcca = cor (Xweceaxs YWecay)

cov(Xwecars Ywecay)

max
weeavweeay SDev (Xweeay) SDev (Yweca y)

(2)

where pcca is the first canonical correlation. If more than one
dependent variable is involved in the study, higher order canonical
variables and canonical correlations can be found as a stepwise
problem, maximizing the correlation and ensuring orthogonality with
previous CCA loading normalized vectors.

The CCA formulation is the most attractive procedure when the
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explanation of the y-variability through the x-variables is envisaged,
since the correlation between y and x is just the variability of y that can
be explained by x.

Which is, then, the reason for the low popularity of CCA among NIR
users? The vectors weca, and weeay that are the solutions of the problem
written in Eq. (2) are, in fact, the largest eigenvectors of the matrices
XTX)XTY (YTYY 'Yy"X and (YY) 'YTX (X7X)"'XTY respectively while
the subsequent CCA loading vectors are the eigenvectors of the same
matrix in the order of decreasing eigenvalues. Notice the presence of
the (X”X)~! and (Y7Y)"! in the procedure that allows finding wcca, and
Weeay- Thus, the collinearity of the x or y measurements amplifies the
noise of the measurements in the calculation of weea, and weeay when
the inverses of these matrices have to be computed. A usual way to
reduce this problem is based on the Tikhonov regularization also known
as Ridge Regression in the statistical field. In the regularized CCA,
additional conditions are imposed in the inversion of the (X7X)~! like,
for instance, smoothness of the estimates when we expect a smooth
contribution of the different wavelengths to the CCA loadings as it is the
case in the NIR field. The most simple regularization factor is the
addition to X”X of the extra term AI, where 1 is the so called
regularization parameter that can be tuned by a validation procedure.
This regularization term aims at finding an optimum model with the
smallest norm of the estimate set of parameters. In this way, both, the
propagation of the errors in x-measurements and the arising of spurious
peaks in the regression coefficients are more controlled.

Different selection procedures for 1 have been suggested in the
literature. A first procedure consists in selecting 4 so that the Root Mean
Square Error of the model calculated on a prediction test, RMSEP,
becomes minimum. In the present case, the application of this
procedure for the calculation of the regularization parameter leads to
models with very low RMSEP but noisy regression coefficients for all
the properties. This indicates that with this strategy, the resulting
regularization parameter is too small since we are only focusing our
interest in reducing the RMSEP. We should then look for a higher 1 so
that regularization plays the desired role but still giving a statistically
good fit to the data. Two procedures based on a test for the residuals of
the model will be examined in this work to determine A: the Durbin-
Watson test (Draper and Smith [15]; Durbin and Watson [16]) and the
Test for Runs (Draper and Smith [15]; Swed and Eisenhard [17]). The
optimum model should have the highest 1 keeping the residuals
uncorrelated when the samples are ordered according to the value of
the property under calibration.

2. Materials and methods

PLS and CCA methods have been applied to the calibration of
quality parameters of wheat flour samples using NIR spectra.

2.1. Sample description

Samples used in this work are selected from the commercial samples
received by a flour company that mills 900,000 kg of wheat per day.
The origin is from different countries, mainly France and USA, and
different years. From a set of 3000 samples, 429 were selected for the
calibration, 215 for the validation and 100 for the prediction sets by
looking at the scores of a PCA model from the spectral information. The
selection was done in order to include samples covering all the area of
the scores plot. Samples selected from the y-values were also included
in order to cover the whole range of y-values. Characteristic values of
these sets are given in Table 1.

2.2. NIR spectra
NIR spectra of the wheat flour samples were collected with a near

infrared spectrometer FOSS NIR System 6500 using the ISIscan (version
2.83) routine operation software from FOSS. These spectra contain the
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