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a b s t r a c t

A dual-reciprocity boundary element method is presented for the numerical solution of a nonsteady

axisymmetric heat conduction problem involving a nonhomogeneous solid with temperature

dependent properties. It is applied to solve some specific problems including one which involves the

laser heating of a cylindrical solid.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Thermal conductivity and specific heat capacity of metallic solids
have been experimentally observed to be strongly dependent on
temperature during processes such as metal quenching. Thus, the
development of numerical techniques for nonlinear heat conduction
in solids with temperature dependent material properties has
attracted the attention of many researchers in computational heat
transfer. Earlier works on boundary element methods, such as
Kikuta et al. [12] and Goto and Suzuki [9], assume that the solids are
thermally isotropic and have density, specific heat capacity and
thermal conductivity which are functions of temperature alone.
Clements and Budhi [8], Azis and Clements [5] and, more recently,
Ang and Clements [2] have proposed boundary element procedures
for thermally anisotropic solids with material properties that vary
with temperature and spatial coordinates.

The works in [2,5] are also applicable to linear heat conduction
in nonhomogeneous media such as functionally graded materials.
The analysis of functionally graded materials is a topic of special
interest in boundary element methods. Some papers on boundary
element methods for solving linear problems involving nonho-
mogeneous media with properties that vary continuously in space
include Ang et al. [3], Clements [7], Kassab and Divo [11], Park and
Ang [16], Rangogni [17], Tanaka et al. [18] and other relevant
references therein.

The present paper considers a nonlinear time-dependent
axisymmetric heat conduction problem involving a nonhomoge-
neous thermally isotropic solid with temperature dependent

properties. Such a problem is of practical interest as axisymmetric
structures can be found in many engineering applications (such as
pressure vessels and piping components). The analyses in Ang and
Clements [2], Azis and Clements [5] and Brebbia et al. [6] are used
as a guide to convert the nonlinear partial differential equation
governing the axisymmetric heat conduction into a suitable
integro-differential equation. In addition to a boundary integral
over a curve on an appropriate coordinate plane, the integro-
differential equation also contains a domain integral. The dual-
reciprocity approach is used here to express the domain integral
approximately in terms of line integrals. The time derivative of
the temperature in the integro-differential formulation is
approximated using a finite difference formula. At any given time
level, if the temperature is assumed known at earlier time levels,
the problem under consideration is formulated in terms of
a system of nonlinear algebraic equations to be solved using
a predictor–corrector (iterative) procedure.

The numerical procedure presented here is applied to solve some
specific problems including one which involves the laser heating of a
cylindrical solid. For problems which have known exact solutions,
the accuracy of the numerical solutions obtained is assessed.

2. The problem

Consider a thermally isotropic solid occupying the three-
dimensional region R. If T is the temperature inside the solid, then
the conservation of energy and the classical Fourier’s law of heat
conduction require the temperature to satisfy the partial
differential equation

rUðkrTÞþQ ¼ rc
@T

@t
in R for tZ0; ð1Þ
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where r is the gradient (nabla) operator, U denotes the dot
product, t is time, r, c and k are, respectively, the density, specific
heat capacity and thermal conductivity of the solid and Q is the
internal heat source generation rate.

With reference to a Cartesian coordinate system denoted
by Oxyz, the geometry of the region R is symmetrical about the
z-axis, that is, the boundary of R can be obtained by rotating a
curve on the Oxz plane by an angle of 3601 about the z-axis.
Furthermore, if r and y denote the polar coordinates defined
by x¼ rcosy and y¼ rsiny, the temperature and the internal
heat source generation rate are assumed to be independent of y,
given by T(r,z,t) and Q(r,z,t), respectively. The thermal conductiv-
ity is functionally graded in the radial and axial directions of the
solid of revolution and is taken to be temperature dependent,
such that

k¼ gðr; zÞhðTÞ; ð2Þ

where g is a suitably given function which is positive in R

and h(T) is a function which is integrable with respect to T. The
density r and the specific heat capacity c are also dependent on r,
z and T.

Mathematically, the problem of interest here is to solve (1)
together with (2) subject to the initial-boundary conditions

Tðr; z;0Þ ¼ f0ðr; zÞ in R;

Tðr; z; tÞ ¼ f1ðr; z; tÞ on S1 for t40;

gðr; zÞhðTÞ
@T

@n
¼ f2ðr; z; tÞ on S2 for t40; ð3Þ

where S1 and S2 are nonintersecting surfaces such that S1 [ S2 ¼ S,
S is the (surface) boundary of the region R, @T=@n denotes the
outward normal derivative of T on S and f0(r,z), f1(r,z,t) and f2(r,z,t)
are suitably given functions.

3. Transformed equations

Through the use of Kirchhoff’s transformation, that is

Yðr; z; tÞ ¼
Z

hðTÞdT �KðTÞ; ð4Þ

the nonlinear governing partial differential equation defined by
(1) and (2) can be rewritten as

gr2Y¼�Q�rgUðrYÞþSðr; z;YÞ
@Y
@t
; ð5Þ

where

Sðr; z;YÞ ¼
rðr; z;MðYÞÞcðr; z;MðYÞÞ

hðMðYÞÞ ; ð6Þ

if one assumes that (4) can be inverted to give the temperature as
T ¼K�1

ðYÞ ¼MðYÞ.
Furthermore, with the substitution

Y¼
1ffiffiffi
g
p c; ð7Þ

(5) becomes

r
2c¼�

Qffiffiffi
g
p þBðr; zÞcþDðr; z;cÞ

@c
@t
; ð8Þ

where r2 is the Laplacian differential operator and

Bðr; zÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

gðr; zÞ
p r

2
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gðr; zÞ

p
Þ; Dðr; z;cÞ ¼

1

g
S r; z;

1ffiffiffi
g
p c

� �
: ð9Þ

The function g is assumed to be such that r2
ð
ffiffiffi
g
p
Þ exists in the

solution domain R.
As c is a function of r, z and t, Eq. (8) can be written out more

explicitly as

@2c
@r2
þ

1

r

@c
@r
þ
@2c
@z2
¼�

Q ðr; z; tÞffiffiffiffiffiffiffiffiffiffiffiffiffi
gðr; zÞ

p þBðr; zÞcþDðr; z;cÞ
@c
@t
: ð10Þ

For the problem under consideration here, as pointed out
earlier in Section 2, the solution domain R and its boundary S can
be obtained by rotating, respectively, a two-dimensional region
and a curve by an angle of 3601 about the z-axis. On the rz plane,
the two-dimensional region and the curve are denoted by O and
G, respectively. Fig. 1 gives a sketch of O (shaded region) and G. In
Fig. 1, G is an open curve having endpoints A and B on the z-axis.
In general, G may also be a closed curve, as in, for example, the
case in which R is the hollow cylindrical region defined by
uorov, 0ozow, where u, v and w are positive constants.

In view of (4) and (7), the initial-boundary conditions in (3)
can be rewritten on the rz plane as

cðr; z;0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gðr; zÞ

p
Kðf0ðr; zÞÞ in O;

cðr; z; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gðr; zÞ

p
Kðf1ðr; z; tÞÞ on G1 for t40;

@

@n
½cðr; z; tÞ� ¼

cðr; z; tÞ
2gðr; zÞ

@

@n
½gðr; zÞ�þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
gðr; zÞ

p f2ðr; z; tÞ on G2 for t40;

ð11Þ

where G1 and G2 denote the curves that can be rotated by an
angle of 3601 about the z-axis to generate the surfaces S1 and S2,
respectively, and

@

@n
½cðr; z; tÞ� ¼ nrðr; zÞ

@

@r
½cðr; z; tÞ�þnzðr; zÞ

@

@z
½cðr; z; tÞ�;

@

@n
½gðr; zÞ� ¼ nrðr; zÞ

@

@r
½gðr; zÞ�þnzðr; zÞ

@

@z
½gðr; zÞ�; ð12Þ

where nr(r, z) and nz(r, z) are the components of the outward unit
normal vector on G at the point (r, z) in the r and z directions,
respectively.

Once cðr, z, tÞ (hence Yðr,z,tÞ) is obtained by solving (10)
in O subject to the initial-boundary conditions in (11), the
temperature T(r, z, t) may be obtained by inverting Kirchhoff’s
transformation in (4).

Fig. 1. A sketch of O and G.
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