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A B S T R A C T

Process quality control and reproducibility in emerging measurement fields such as metabolomics is normally
assured by interlaboratory comparison testing. As a part of this testing process, spectral features from a
spectroscopic method such as nuclear magnetic resonance (NMR) spectroscopy are attributed to particular
analytes within a mixture, and it is the metabolite concentrations that are returned for comparison between
laboratories. However, data quality may also be assessed directly by using binned spectral data before the time-
consuming identification and quantification. Use of the binned spectra has some advantages, including
preserving information about trace constituents and enabling identification of process difficulties. In this paper,
we demonstrate the use of binned NMR spectra to conduct a detailed interlaboratory comparison. Spectra of
synthetic and biologically-obtained metabolite mixtures, taken from a previous interlaboratory study, are
compared with cluster analysis using a variety of distance and entropy metrics. The individual measurements are
then evaluated based on where they fall within their clusters, and a laboratory-level scoring metric is developed,
which provides an assessment of each laboratory's individual performance.

1. Introduction

Chemometrics is a field that refers to the application of a wide range
of statistical and mathematical methods, including multivariate meth-
ods, to problems of chemical origin [1–3]. With the advance of
analytical instrumentation in chemical metrology, an increasing
amount of data can be generated which requires multiple approaches
for extracting reliable information. This has required and enabled the
development of improved analytical procedures for data analysis based
on sound chemometric principles in order to reliably assess the
properties of interest in a system under study.

In recent years, the importance of metrology in the world has grown
significantly since its main focus is to provide reliability, credibility,
universality and quality measurements. Since measurements are essen-
tial, directly or indirectly, in virtually all decision-making processes, the
scope of metrology is immense, involving important areas of society
such as industry, trade, health, safety, defense and the environment. It
is estimated that about 4% to 6% of the gross domestic product of
industrialized countries is dedicated to measurement [4]. In this
context, the use of chemometrics in combination with metrology is a
potential approach to the interpretation of data in decision making,
providing improved industrial and technological development. One of

the important metrological activities that can be highlighted is the
participation and organization of interlaboratory quality assurance
programs. Quality assurance includes interlaboratory studies used as
an external evaluation tool and in the demonstration of the reliability of
laboratory analytical results. It also serves to identify gaps in the
analytical process and enable comparability improvement. Moreover, it
is one of the items required for accreditation tests by ISO/IEC 17025:
2005 [5].

According to ISO 13528: 2015 [6] and ISO/IEC 17043 [7], there are
several statistical tools to be used to assess the results of analytical
laboratories participating in proficiency testing. Among them there are
the Z-scores, Z'-scores, Zeta scores and En scores. The problem with
these metrics is related to the fact that they can only be used for cases of
univariate measurement results and have not been systematically
extended to multivariate analyses. However, some studies have demon-
strated efforts to analyze the quality of multivariate data. An example of
this is in the field of metabolomics [8] in which principal components
analysis (PCA) was used to evaluate data from an interlaboratory
comparison. In other work [9], a metric called Qp-score is proposed to
evaluate the performance of each laboratory for multivariate data.
Other than these studies, there have been few attempts to perform
interlaboratory comparisons on multivariate data. But even these
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studies have used spectral data to measure some property or set of
properties and then determined standard univariate scores for these
measurements. For instance, in Gallo et al. [9], the participating
laboratories determined calibration curves for metabolite concentration
with respect to nuclear magnetic resonance spectroscopy (NMR)
spectral feature intensity and then determined a score from those
curves. In Viant et al. [8], several significant features within each
spectrum were identified and then univariate scores determined based
on the intensities of those features. In each case, however, the scoring
process reduces a vector of thousands of components to one possessing
relatively few components, and it is still difficult to extract a compre-
hensive metric of “goodness” from this information.

Considering the lack of a multivariate metric in the ISO standards
that address the subject, the objective of this study is to propose the
application of algorithms already known in the literature that can be
used for the evaluation of multivariate data in proficiency tests. We re-
examine the data collected by Viant et al. [8], and extend their analysis
by proposing a scoring metric that assumes a single value for each NMR
spectrum, which can be further extended to a laboratory-level metric
that can be used for quality control and analysis.

1.1. Brief statement of the interlaboratory comparison problem

The problem of laboratory-outlier detection in an intercomparison
study can be expressed in the following way:

R x r f T x I x r f ε( , , ) = ( ) + ( , , ) + , (1)

where R is the measured response function, T is the underlying true
value, I is some instrument function and epsilon is noise. R is a function
of the experimental independent variables x (in this case, NMR
chemical shifts and the static NMR field strength) but also depends
on the replicate number r and the facility identifier f. This expression
for R allows an explicit statement for how the response might vary
based on the use of different measuring devices in different locations,
and even run-to-run variability in the same device. The underlying
truth T depends only on the independent variables, while I explicitly
contains the variability among the measurements.

In the normal regression problem, I is treated as being part of the
noise epsilon. For an interlaboratory study, however, the instrument
function could actually contain a great deal of information about the
individual laboratories that make the measurements.

The purpose of an interlaboratory comparison study is to identify
those laboratories whose instrument function is sufficiently system-
atically different to indicate that those laboratories may be sampling
from a different population. For instance, in the Viant et al. study [8],
NMR spectra were taken at various magnetic field strengths. The
individual spectra consist of magnetic field dependent features (chemi-
cal shifts) and magnetic field independent features (spin-spin cou-
plings). As a result, spectra taken under different field strengths are not
directly comparable. If the instrument function contains such systema-
tic lab-to-lab variations, then, the performance of one laboratory
relative to the others will be consistently different when compared
across a range of many different values of the independent variables x,
which in this case means many different samples.

It should be noted here that measurements taken of the same object
at different laboratories by different analysts on different instruments
are considered to be independent of each other, in the sense that there
is no cross-communication between the different laboratories. Likewise,
the measurements of different objects by the same laboratory will also
be independent.

1.2. Multivariate metrics used for interlaboratory comparison

In chemometrics and information theory, there are several common
metrics used for pattern recognition [10–16]. It is important to mention
the Euclidean distance [17–20] and the Mahalanobis distance [21–26]

as the most used, however, there are other metrics based on a
probabilistic approach [27], for example, the Hellinger distance [28],
the Kullback-Leibler divergence [29] and the Jensen-Shannon distance
[30,31]. All these metrics may be used in metrological activities such
as, for example, interlaboratory comparison.

1.2.1. Similarity measures based on vector distance: Euclidian and
Mahalanobis distance

The Euclidean distance is defined by

∑d x yx y x y x y x y( , ) = − = ( − ) ( − ) = ( − ) ,T
k k kE
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⎤
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where the x and y column vectors represent two spectra and xk and yk
are the features of those spectra, with the sum taken over the elements
of the vectors. The Euclidean distance gives greater weight to large
differences between prominent features than to differences between
small, but possibly clinically significant, features. However, it does not
correct for correlation structures in the data. To resolve this issue, the
Mahalanobis distance is often used, which is defined by

d x y x y Σ x y( , ) = ( − ) ( − )M
T −1 (3)

where Σ is the covariance matrix which may be estimated in numerous
ways.

1.2.2. Similarity measures based on probabilistic distance: Hellinger
distance, Kullback-Leibler divergence, and the Jensen-Shannon distance

Alternatives to the Euclidean and Mahalanobis distances include
metrics from information theory to analyze probability density func-
tions. Interpreting an NMR spectrum in this way requires that the
spectrum be non-negative and also that it integrate to unity. Under this
interpretation, the spectrum indicates what fraction of the total
oscillatory power is contained at each frequency. The metrics we
discuss here are the Hellinger distance [28], the Kullback-Leibler (KL)
divergence [29], and the Jensen-Shannon distance [30,32–34]. The
Hellinger distance between two spectra is defined by

∑d x yx y( , ) = 1 −
k k kH (4)

and varies between 0 and 1. If d = 0H , then x and y are identically
equal, indicating similar performance of the two data sets from which x
and y are obtained. If d = 1H , x is zero everywhere that y is positive and
vice versa, indicating a divergence of the two data sets. In terms of an
interlaboratory comparison, d ≪ 1H corresponds to similar performance
between laboratories, while d ≈ 1H represents divergence in the results
of the laboratories.

The KL divergence, sometimes termed the relative entropy, is
defined by

∑d x x
y

x y( , ) = 1/ln 2 ln .
k k
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The KL divergence is not symmetric, and so what is used here is the
symmetrized KL (SKL) divergence, sometimes termed the Jeffreys
divergence,

d d dx y x y y x( , ) = ( , ) + ( , ).SKL KL KL (6)

Unlike the Hellinger distance, the SKL divergence varies between 0
and positive infinity, with positive infinity corresponding to divergence
between the laboratories. Furthermore, if an element of x or y is zero
anywhere where the other is nonzero, the SKL divergence will diverge
to infinity.

The SKL divergence is not a distance metric because it does not
satisfy the triangle inequality, so as an alternative we will also use the
Jensen-Shannon (JS) distance [35–37], defined by

d d dx y x m y m( , ) = ( , ) + ( , )JS KL KL (7)

where m is the arithmetic mean of x and y. Like the Hellinger distance,
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