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A B S T R A C T

Pulsed thermography, widely used as a nondestructive testing method, offers many advantages for material
defect detection. However, most existing methods for pulsed thermographic data processing aim to enhance the
defect signals in each single thermal image, whereas automatic defect detection is not achieved. Instead,
laborious and time-consuming visual inspection of the processed images is required to draw final conclusions. It
is usually impossible to visually inspect all images. Therefore, manual selection of a few informative images is
often a required step before thermal image processing, probably resulting in the oversight of necessary defect
information. To overcome the drawbacks of the existing methods, a hyper-image segmentation method is
proposed in this study, which analyzes all thermographic data simultaneously to achieve automatic defect
detection and avoid the risk of losing information. Specifically, an iterative defect detection procedure is
designed on the basis of the Laplacian eigenmap algorithm. The results of a case study on the carbon-fiber-
reinforced plastic (CFRP) materials show the feasibility of the proposed method.

1. Introduction

In recent years, nondestructive testing (NDT) methods have been
widely adopted for the detection of defects in materials. These
techniques include thermography [1,2], ultrasonic inspection [3–5],
electrical resistance [6], X-ray inspection [7], etc. Among these NDT
methods, thermography is particularly attractive and offers the advan-
tages of low cost, easy operation, high speed, and wide area coverage.

Thermography is a subsurface analysis technique that generates a
series of thermal images by using an infrared camera to capture the
surface temperature of the target specimen. Thermography can be
categorized into two classes: passive thermography and active thermo-
graphy. The passive type is suited to the analysis of samples with inner
heat sources, such as biological organisms, furnaces, etc. For composite
materials, however, there is no such inner heat source. Thus, active
thermography is adopted. An important category of active thermo-
graphy is pulsed thermography (PT), which uses a high-energy, short-
period heat source to heat the surface of the specimen. After heating,
the heat diffuses into the specimen. At the same time, the variations in
the temperature of the specimen's surface can be captured by an
infrared camera to generate a thermographic dataset. Owing to the
speed of the inspection, PT is popular in the field of active thermo-
graphy [8]. According to the locations of the tested specimen, heat
source, and infrared camera, the operation of PT can be further

classified into two modes: transmission mode and reflection mode. In
transmission mode, the external heat source stimulates the tested
specimen on one side while the camera captures the temperature
information on the opposite side of the specimen. In reflection mode,
in contrast, the external heat source and the infrared camera are both
positioned on the same side of the specimen. Generally, the former is
usually used for detecting defects located near the heated surface,
whereas the latter allows detection of defects near the rear surface.
However, because the rear face may not be accessible and the defect
depth cannot be estimated in transmission mode [9], reflection mode is
more widely used in PT. Thus, in this study, we opted to utilize the
reflection mode of PT.

As illustrated in Fig. 1, the PT dataset consists of three-dimensional
(3-D) data shown as a series (Nt frames) of two-dimensional (2-D)
thermal images, each with a size of Nx×Ny pixels and corresponding to
an acquisition time point. From another point of view, the dataset can
also be seen as a hyper-image with a size of Nx×Ny, with each pixel
corresponding to a temperature decay curve at Nt time points. In PT,
differences exist between the temperature decay curves in the defective
and intact regions [10] because of the different thermal properties
resulting from the discontinuities in the inner structures of the material.
Hence, based on the thermal images, the temperature contrasts between
the defective and intact regions offer a means of defect detection.

However, in practice, the factors including noise, external environ-
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mental disturbances, and uneven heating may lead to a low level of
contrast in the collected thermal images. In attempts to address these
issues, PT data processing methods have been proposed, such as
thermographic sequence reconstruction (TSR) [11], differential abso-
lute contrast (DAC) [12], pulsed phase thermography (PPT) [13],
principal component thermography (PCT) [14], multi-dimensional
ensemble empirical mode decomposition (MEEMD) [15], stable princi-
pal component pursuit (SPCP) [16], mathematical morphology [17],
penalized least square (PELS) [18], etc. Among these methods, the
recently proposed PELS is effective at characterizing defects by remov-
ing the noise and non-uniform backgrounds contained in the thermal
images.

Although these data processing methods enhance the contrast
between the defective and intact regions, they cannot localize the
defects automatically. Instead, visual inspection of thermal images is
the most common way to identify the detect locations based on PT,
which is time consuming and laborious. Most recently, image segmen-
tation is implemented in thermal image analysis to achieve more
efficient defect detection [19,20]. However, in these papers, only a

few thermal images with distinct defect boundaries are manually
selected from the entire 3-D thermographic dataset for processing,
resulting in several limitations. First, the selection of the representative
frames by means of visual inspection is tedious and time consuming.
Second, defects with different depths in the tested specimen are often
revealed by the thermal images collected at different sampling time
points. The manually selected frames may not contain the information
of all defects. Third, because the characteristics of a defect may appear
in multiple thermal images, analyzing only a few frames in the
thermographic dataset may cause important information on that defect
to be neglected.

To solve these problems and achieve automatic defect detection, in
this study, the concept of a data mining method called Laplacian
eigenmap (LE) [21] is utilized to handle all pulsed thermographic
images and temperature decay curves simultaneously. The motivation
of the proposed method is as follows. As discussed, PT generates a
sequence of thermal images which record the temperature contrasts
between the defective and intact regions. It is natural to think of using
pattern recognition techniques, specifically image segmentation, for
automatic defect identification from these images. In [22], it is
proposed to solve the image segmentation problem by minimizing a
normalized cut criterion. This criterion measures both the total dissim-
ilarity between the different segments as well as the total similarity
within each segment. The minimization problem can be solved
efficiently by using LE. Inspired by this research work, a hyper-image
segmentation method is proposed in this paper for automatic defect
identification based on PT data. An iterative segmentation procedure is
developed to identify the locations of different defect regions in
sequence. In doing this, more accurate and efficient detection results
can be expected.

2. Hyper-image segmentation for automatic defect detection

2.1. Laplacian eigenmap dealing with PT data

In this section, the concept of LE is introduced to the analysis of
thermal images.

In the first step of the analysis, an adjacency graph is constructed to
summarize both the adjacency information of pixels in the thermal
images and the similarities among the temperature decay curves. In the
adjacency graph, each node corresponds to a pixel in the hyper-image
generated by PT, and there is an edge connecting each pair of adjacent
nodes. For each pixel, there are no more than eight adjacent nodes. To
weight each edge, the similarity between the temperature decay curves
on the corresponding pixels is calculated. Following the suggestion in
[21], this similarity can be defined using the heat kernel:
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xi and xj are vectors describing two temperature decay curves, and δ is
a user-specified scaling parameter.

The adjacency graph is then transformed into a matrix denoted as
W, where the entries Wi j, in W are defined as
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Obviously, the value ofWi j, of adjacent pixels is located between zero
and one.

In the foregoing steps, the parameter δ should be selected with
caution, because it determines the resolution of the algorithm. An
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Fig. 1. Structure of 3-D thermographic dataset: (a) shown as a 1-D acquisition time
sequence, with each time point corresponding to a frame of a 2-D thermal image; (b)
shown as a 2-D image, with each pixel corresponding to a 1-D temperature decay curve
(the red ones are example pixels in Fig. 2). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article).
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