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A B S T R A C T

Principal component analysis (PCA) is a widely accepted procedure for summarizing data through dimensional
reduction. In PCA, the selection of the appropriate number of components and the interpretation of those
components have been the key challenging features. Sparse principal component analysis (SPCA) is a relatively
recent technique proposed for producing principal components with sparse loadings via the variance-sparsity
trade-off. Although several techniques for deriving sparse loadings have been offered, no detailed guidelines for
choosing the penalty parameters to obtain a desired level of sparsity are provided. In this paper, we propose the
use of a genetic algorithm (GA) to select the number of non-zero loadings (NNZL) in each principal component
while using SPCA. The proposed approach considerably improves the interpretability of principal components
and addresses the difficulty in the selection of NNZL in SPCA. Furthermore, we compare the performance of PCA
and SPCA in uncovering the underlying latent structure of the data. The key features of the methodology are
assessed through a synthetic example, pitprops data and a comparative study of the benchmark Tennessee
Eastman process.

1. Introduction

With the recent advances in communication technologies and the
emergence of smart factories, large volumes of data are routinely
collected and stored at high sampling rates. Such a dramatic increase in
data volume and frequency requires developing new statistical methods
and visualizations to gain insights from multivariate data to generate
actionable information for optimizing and troubleshooting process
operations. Historically, multivariate statistical analysis techniques
have been applied in a wide range of fields including genomics,
financial econometrics, signal processing, and various industrial pro-
cesses [1–5]. Principal component analysis (PCA) is among the most
commonly and widely used multivariate techniques with various
applications ranging from facial recognition to data dimension reduc-
tion to clustering.

PCA reduces the dimensionality of the dataset while capturing as
much variability as possible. In other words, PCA captures the essential
information (variance) in m variables of the original data set in l
retained principal components (PCs). In most conventional settings,
data are high dimensional but the underlying signal has a low-
dimensional structure. Thus, l is often much smaller than m.
Mathematically, finding such PCs reduces to an eigenvalue/eigenvector
problem. The PCs obtained from PCA represent the eigenvectors of the

sample covariance or the sample correlation matrix of the original
dataset. This means that PCA successively maximizes the variance by
finding PCs that have the following properties: they are linear
combinations of the original m variables, ordered according to their
variance magnitudes, uncorrelated and the vectors of their coefficients,
also called component loadings, are orthogonal. Such constraints on the
derivation of PCs have advantages and disadvantages. For the former,
preservation of the distance between data points, having a diagonal
covariance matrix and uncorrelated components are the most obvious
choices. On the other hand, to satisfy these constraints, most PCs have
non-zero loadings for all original variables. This, in turn, makes the
interpretation of PCs challenging when the dimension m is large.

A number of researchers proposed approaches to address the
interpretation concerns in PCA [6–10]. Rotation of PCs is a common
practice wherein the rotated components are easier to interpret without
any loss of information. Jolliffe [8] described several normalization
techniques for the rotation of PCs that are helpful for interpreting the
individual components. The rotated components can be either pairwise
uncorrelated or orthogonal, depending upon the normalization chosen
for the loadings prior to the rotation. In addition, different normal-
ization criteria can lead to different quantitative results. Moreover, in
conventional PCA, each component captures as much variance as
possible. Thus, the first PC captures the maximum variance and the
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variance captured by remaining components decreases monotonically.
Other techniques proposed in the literature to improve interpret-

ability of the PCs do so by imposing additional constraints. In such
approaches, the sparsity in PC loadings is obtained at the expense of
explained variance. The simplified component technique (SCoT) is one
such approach wherein a penalty function is introduced to obtain the
required sparsity of PC loadings [11]. Each successive components
obtained using SCoT can be constrained to be orthogonal to, or
uncorrelated with, one another to obtain the desired sparsity. Jolliffe
and Uddin [11] demonstrated that SCoT outperformed rotated PCA in
terms of the varimax criterion [12]. However, SCoT suffers from having
many local optima and the choice of the penalty function is problem
specific; there is no single penalty value that would work for all cases.

Jolliffe et al. [13] proposed the Simplified Component Technique –
LASSO (SCoTLASS) which adds a “least absolute shrinkage and selec-
tion operator” (LASSO) constraint to SCoT. In SCoTLASS, an extra
constraint is introduced in the form of a bound on the sum of absolute
values of loadings in that component. This constraint shrinks some of
the loadings on the components to be exactly zero which makes it more
favorable for variable selection. While SCoTLASS has clear advantages
over rotated PCA and SCoT, the introduction of the additional
constraint requires a decision on a tuning parameter (t) that limits
the search space for an optimal solution. Jolliffe et al. [13] showed that
for values of t larger than the square root of the number of variables
( m ), a PCA solution is obtained and as t gets smaller than m , the
number of non-zero loadings (NNZL) on each component also de-
creases. Again, the increased sparsity in the loading structure is
obtained by a decrease in variance explained. In addition, the value
of t also affects the correlation between the PCs and there is no
satisfactory rule for selecting t. Thus, the choice of t is crucial and
has to be studied subjectively to obtain a suitable sparsity-variance
trade-off.

There are several other methodologies proposed in the literature to
obtain sparse loadings [4,13–19]. Trendafilov [20] and Jolliffe et al.
[21] offered reviews of main approaches and recent developments for
improving the interpretation of results obtained from PCA. The
technique that will be used and discussed in this paper is the one
proposed by Zou et al. [4] who obtained sparse loadings by reformulat-
ing PCA as a regression problem and imposing LASSO (elastic net)
constraints on the L1 norm of the regression coefficients (sparse
loadings). This methodology, known as sparse principal component
analysis (SPCA), has several advantages such as it efficiently solves the
optimization problem with a cost of a single least squares fit, can be
applied in the case when m is much larger than sample size and the
desired NNZL can be specified for each component. The SPCA algorithm
will be discussed in detail in the preliminaries section.

Specifying NNZL for each SPC is a numerically hard combinatorial
problem [22]. Some examples of such problems are the travelling
salesman, the knapsack problem, cloud deployment options for sup-
porting migration of software to the cloud or financial applications such
as constrained portfolio selection [23,24]. They could be solved by
general search heuristic procedures like simple enumeration that
requires large computational times and is impractical if the problem
dimension is large. To tackle such hard problems, Evolutionary
Algorithms (EA) based on the principle of evolution were introduced
in the past decade [25]. Genetic algorithms (GA) represent a widely
used type of EA for constrained and unconstrained optimization
[24,26–28] and are unbiased adaptive heuristic search algorithms
[29]. In this paper, we propose the use of genoud (GENetic
Optimization Using Derivatives) function that effectively combines EA
methods with a derivative based (quasi-Newton) method to solve
difficult optimization problems [30,31]. The function genoud can be
used to solve problems for which derivatives do not exist, that are
nonlinear or perhaps even discontinuous in the parameters of the
function to be optimized.

Inspired by the challenges mentioned above, we propose the use of a

genetic algorithm to specify the number of NNZL on each principal
component for the SPCA.

The paper is organized as follows: the next section briefly introduces
PCA, SPCA and genetic optimization concepts for the sake of complete-
ness, followed by the introduction of the case studies based on the
synthetic example, pitprops data and Tennessee Eastman benchmark
process simulation. The results for selecting NNZL for each SPC are
discussed next. Subsequently, the results obtained from the SPCA on the
case studies are compared with the conventional PCA. Finally, the
conclusions and directions for future work are presented.

2. Preliminaries

2.1. Principal Component Analysis (PCA)

PCA is the eigenvector decomposition of the covariance or the
correlation matrix obtained from data matrix X R∈ n m× that contains n
observations of m process variables and is already scaled to zero mean
and unit variance, into a transformed subspace of reduced dimension.
The sample covariance matrix of X is defined as:

X Σ X X
n

cov( ) = =
− 1

T

(1)

The decomposition is then expressed as follows:

X TP X E= = +͠T (2)

where T R∈ n m× and P R∈ m m× are the score matrix and the loading
matrix, respectively. The matrices X͠ and E represent the estimation of
X and the residual part of the PCA model, respectively, and are defined
as follows:
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The PC projection reduces the original set of variables to l PCs
where l must be equal or less than the smaller dimension of X. The
decomposition assumes that PC loadings are orthonormal
p p for i j p p for i j( = 0 ≠ , = 1 = )i

T
j i

T
j and PC scores are orthogonal

t t for i j( = 0 ≠ )i
T

j . The pi are the eigenvectors of the covariance,Σ or
correlation matrix, given by:

X p Λ pcov( ) =i i i (5)

where Λi is the eigenvalue associated with the eigenvector pi. The
loadings (pi) contain information on how the variables relate to each
other whereas ti vectors are scores that contain information on how the
samples relate to each other.

As mentioned earlier, the dimension of the data is set to be equal to
the number of PCs. The number of PCs is often reduced to a set of size l,
where l m1 ≤ ≤ . The optimal number of components is chosen such
that the model captures the variation in the dataset and not the noise.
The trade-off here is that the closer the value of l is to m the better the
PCA model will fit the data since more information is then retained,
while the closer l is to 1, the simpler the model. However, to make the
analysis easier, we only want to retain components capturing most of
the variation in the dataset. Several techniques to determine l, i.e., the
number of "meaningful" components, have been proposed in the
literature [6,32]. An overview of the techniques can also be found in
Cangelosi and Goriely [33]. In this work, we use the simple rule that the
first l PCs retain 85% CPV.

The percentage of explained variance (PEV) is the fraction of
explained variance by each PC and the cumulative percent variation
is a measurement of the percent variation captured by the first l ordered
PCs given by:
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