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This paper presents the dual reciprocity boundary element method (DRBEM) solution of the unsteady
natural convective flow of nanofluids in enclosures with a heat source. The implicit Euler scheme is
used for time integration. All the convective terms are evaluated in terms of DRBEM coordinate matrix.
The vorticity boundary conditions are obtained from the Taylor series expansion of stream function

Keywords: equation. The results report that the average Nusselt number increases with the increase in both
Nanofluids volume fraction and Rayleigh number. It is also observed that an increase in heater length reduces the
DRBEM ) heat transfer. The average Nusselt number of aluminum oxide-water based nanofluid is found to be
EE;“SL;O“"EC“‘)“ smaller than that of copper-water based nanofluid. Results are given in terms of streamlines, isotherms,

vorticity contours, velocity profiles and tables containing average Nusselt number for several values of
Rayleigh number, heater length, volume fraction, and number of iterations together with CPU times.
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1. Introduction

Nanofluids are engineered colloids composed of a base fluid
and nanometer sized particles. Conventional heat transfer fluids,
such as water, engine oil and ethylene glycol have low heat
transfer performance. Therefore, various techniques are applied to
enhance the heat transfer of these fluids. One of them is the use of
solid particles as an additive suspended into the base fluid. The
improved heat transfer performance of nanofluids is due to the
fact that the nanoparticles increase the heat capacity, and
improve the thermal conductivity of the fluid.

Heat transfer enhancement in a two-dimensional enclosure
utilizing nanofluids is investigated for various pertinent para-
meters by Khanafer et al. [1] using finite-volume approach along
with the alternating direction implicit method. They analyze the
effect of suspended ultrafine metallic nanoparticles on the fluid
flow and heat transfer processes within the enclosure. Stream
function-vorticity formulation of the transport equations are
solved using finite difference method in [2]. They showed that
increasing the buoyancy parameter and volume fraction of
nanofluids causes an increase in the average heat transfer
coefficient. Tiwari and Das [3] investigated the behaviour of
nanofluids inside a two-sided lid-driven differentially heated
square cavity using finite volume method. Effect of copper-water
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nanofluid as a cooling medium has been studied to simulate the
behaviour of heat transfer due to laminar natural convection in a
differentially heated square cavity in [4] using finite volume
approach. They observed that the heat transfer decreases with
increase in volume fraction for a particular Rayleigh number.
Numerical simulation of natural convection of nanofluids in a
square enclosure is studied by Ho et al. [5] using finite volume
method. Results demonstrate that the uncertainties associated
with different formulas adopted for the effective thermal
conductivity, and dynamic viscosity of the nanofluid have a
strong bearing on the natural convection heat transfer character-
istics in the enclosure. Oztop and Abu-Nada [6] studied heat
transfer and fluid flow due to buoyancy forces in a partially
heated enclosure using different types of nanoparticles. Finite
volume method is used to solve the transport equations. It was
found that the heater location effects the flow and temperature
fields when using nanofluids. They also studied effects of
inclination angle on natural convection in enclosures filled with
copper-water nanofluid [7]. Natural convection heat transfer of
water-based nanofluids in an inclined enclosure with a heat
source is investigated by Ogiit [8]. It is observed that the average
heat transfer decreases with an increase in the length of the
heater. The governing equations are solved using polynomial
differential quadrature method (DQM). Aminossadati and Ghase-
mi [9] studied natural convection flow with cooling of a localized
heat source at the bottom of a nanofluid-filled enclosure. The top
and vertical walls of the enclosure are maintained at relatively
low temperature. The governing equations are solved with a finite
volume method using a SIMPLE algorithm. They also studied [10]
natural convection heat transfer in an inclined enclosure filled
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with a water-CuO nanofluid using the same method. Two
opposite walls of the enclosure are insulated and the other two
walls are kept at different temperatures. The results indicate that
adding nanoparticles into pure water improves its heat transfer
performance. In another paper [11] they examine the periodic
natural convection in an enclosure filled with nanofluids. A
periodic behaviour is found for the flow and temperature fields as
a result of the oscillating heat flux.

All of the numerical methods available in the literature which
have been applied to simulate natural convection of nanofluids in
a square enclosure are domain discretization methods in space
coordinates. Thus, the resulting system of algebraic equations is of
very large size due to the large number of nodal points in the
region, to achieve a good accuracy. The boundary element method
is a numerical scheme which discretizes only the boundary of the
region reducing the size of the resulting systems. But, a domain
integral results in BEM due to the inhomogeneity when the
equation is Poisson’s type. This causes the lost of boundary only
nature of BEM. Then, the DRBEM is made use of to transform this
domain integral also to a boundary integral. The DRBEM has also
the flexibility of using fundamental solution of Laplace equation,
and approximating all the convective terms using coordinate
matrix in terms of radial basis functions. The application of
DRBEM for solving natural convective flow is given in [12] which
uses the coupling of DQM-in time and DRBEM-in space. The
results are provided for Ra values up to 10°. DRBEM application
is extended to solve natural convection flow of micropolar
fluids in [13].

In this paper, the dual reciprocity boundary element method is
employed to discretize the spatial derivatives in the stream
function-vorticity formulation of the Navier-Stokes and energy
transport equations. DRBEM idea is applied to the Laplace
operator in each equation by using the fundamental solution of
Laplace equation and keeping all the other terms as nonhomo-
geneity [14]. This makes the computations much easier and less
expensive comparing to the BEM since the matrices obtained
contain only the fundamental solution and its derivative. The
DRBEM reduces all calculations to the evaluation of the boundary
integrals only. The resulting matrices contain integrals of
logarithmic function or its normal derivative. This fact might be
advantageous in geometrically involved situations that are
frequently encountered in fluid flow problems. The unknown
vorticity boundary conditions are obtained from the Taylor series
expansion of stream function equation, and all the convective
terms are evaluated by using DRBEM coordinate matrix. DRBEM
application of unsteady natural convection flow of nanofluids
gives rise to systems of initial value problems in time. The implicit
Euler scheme is made use of solving these systems, and all the
original unknowns (stream function, vorticity and temperature)
are obtained at all transient levels including steady-state.

2. Governing equations

The non-dimensional, unsteady equations of motion and
energy for nanofluids can be written in terms of stream function
(), vorticity (w) and temperature (T), [9] as follows:
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where (x,y) € @ c R?, t > 0. Ra and Pr are the Rayleigh and Prandtl
numbers, respectively. The subscripts ‘nf and ‘f refer to nanofluid
and fluid.
The dimensionless velocities are given as u=ay/dy,
v = -0y /ox and the vorticity is defined by w = ov/ox—aou/ay.
Thermal diffusivity and the effective density of the nanofluid is
given by [6]
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where k is the thermal conductivity, ¢ is the nanoparticle volume
fraction and C, is the specific heat at constant pressure. The
subscripts ‘eff and ‘s’ refer to effective and solid, respectively.
o =Ky /(pCp)s is the thermal diffusivity of the fluid.

The heat capacitance and the thermal expansion coefficient of
the nanofluid are defined as [9]

(PCp)ns = A=) (PCp)r + P(pCp)s

(PB)ng = A=@)p P+ P(pP)s
The viscosity of the nanofluid given by [9]
(1 _(P)Z.S

Here u; is the dynamic viscosity of the fluid. The effective
thermal conductivity of the nanofluid is approximated for the
spherical nanoparticles by the Maxwell-Garnetts model [6]
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The equations in (1) are supplied with the initial conditions
T(X-yvo) = TO(X-J’)

where wg(x,y) and To(x,y) are given functions of space and time.

Corresponding boundary conditions are shown in Fig. 1. The
velocity components are zero on the solid walls. The wall at x=1
is cooled and the horizontal walls are adiabatic. The left wall is
heated with constant heat flux for a varying length with a
parameter ¢ [8]. The fluid in the enclosure is a water-based
nanofluid containing copper (Cu) and aluminum oxide (Al,03)
nanoparticles. It is assumed that the base fluid and nanoparticles
are in thermal equilibrium and no slip occurs between them. The
thermo-physical properties of the nanofluid are assumed to be
constant except for the density variation, which is approximated

w(x,y,0) = wy(x,y),
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Fig. 1. Layout of the problem.
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