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a b s t r a c t

This paper presents a new meshless method using high degree polynomial shape functions. These shape

functions are approximated solutions of the partial differential equation (PDE) and the discretization

concerns only the boundary. If the domain is split into several subdomains, one has also to discretize

the interfaces. To get a true meshless integration-free method, the boundary and interface conditions

are accounted by collocation procedures. It is well known that a pure collocation technique induces

numerical instabilities. That is why the collocation will be coupled with the least-squares method. The

numerical technique will be applied to various second order PDE’s in 2D domains. Because there is no

integration and the number of shape functions does not increase very much with the degree, high

degree polynomials can be considered without a huge computational cost. As for instance the p-version

of finite elements or some well established meshless methods, the present method permits to get very

accurate solutions.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

This paper presents a discretization technique to solve elliptic
partial differential equations. It relies on high degree shape
functions that are approximate solutions of the PDE. More
precisely one requires that the residual is of order Oðjx�cjNþ1Þ

in the neighborhood of a given center c. This permits to discretize
only the boundary conditions. These discretized equations could
be obtained by two classical ways, first Galerkin procedure with
the drawback of the integration cost, second point-collocation
that is integration-less, but can lead to numerical instabilities and
ill-conditioned matrices [7]. In this paper point-collocation
method has been chosen and associated with a least-squares
minimization to overcome the numerical instabilities, as pro-
posed by Zhang et al. [18] and used by several others [19–24]. So
the proposed method is characterised by closed-form solutions
built by Taylor series, boundary discretization and coupling
between collocation and least-squares minimization.

To our best knowledge, such a discretization principle has
never been presented in the numerical literature, but of course it
has some points in common with the many numerical methods
that are not based on low degree polynomials. It can be compared
with the p-version of finite element and one can hope that the
presented technique permits to recover more or less the same
accuracy and adaptivity as the p-version [1–3]. The differences lie
in the number of shape functions that is much smaller with the

present method, in the computation cost and in the discretization
principle. Our discrete problem is deduced from point-wise
equations as in many meshless methods [4–6,8,25], but the
present method does not use a priori given shape functions, they
are built from a local solving of the PDE. There are at least three
well known numerical methods that associate a family of exact
solutions and a boundary discretization: the integral equation
method [9–11], the method of fundamental solutions [12–14] and
the scaled boundary finite element method [15–17]. In these
three methods, the reference problem has to be linear with
constant coefficients while the present Taylor series method can
be extended to generic PDE’s.

The paper is organised as follows. In the second part, the
instabilities due to pure collocation are pointed out and compared
with least-squares collocation. In Part 3, a computational
technique is sketched that permits to apply Taylor series to PDE’s.
Finally in Part 4, various 2D applications are discussed to assess
the possibilities of the presented numerical method.

2. Boundary collocation versus boundary least-squares
collocation

2.1. Polynomial shape functions

Let us consider the Dirichlet problem in a 2D domain:

Du¼ 0 in O
uðxÞ ¼ udðxÞ on @O

(
ð1Þ
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The aim is to introduce high degree polynomial shape functions,
that are exact solutions of the considered partial differential
equations. In the case of the Laplace equation Du¼ 0, there are
only two such polynoms of degree n, namely Re(x+ iy)n and
Im(x+ iy)n. Next, let us introduce all the polynoms, whose degree is
lower or equal to p. The dimension of this vectorial space is
((p+1)(p+2))/2, but if one limits to the solutions of the Laplace
equation, this dimension is reduced to 2p+1. Note that the
limitation to the solutions of the PDE permits to reduce strongly
the number of shape functions, for instance 101 polynoms instead
of 1326 for a degree equal to 50. With this reduction of the
number of functions, one can hope to build a numerical method
that remains efficient with a large degree.

2.2. Boundary collocation

As for instance in the method of fundamental solutions (MFS),
exact solutions of the PDE are used. Hence it is only necessary to
discretize the boundary conditions. Hence, the cloud of colloca-
tion points is located on the boundary. The simplest technique is
to choose as many collocation points x

i
as shape functions Piðxi

Þ.
The unknown is written in the classical form as

uðxÞ ¼
X2pþ1

i ¼ 1

PiðxÞvi ð2Þ

and the discretized equations are

X2pþ1

i ¼ 1

Piðxj
Þv

i
¼ udðx

j
Þ, 1r jr2pþ1 ð3Þ

Let us apply, this simple boundary collocation to a unit disk
x2þy2r1, and with the boundary data

udðx,yÞ ¼
x�x0

ðx�x0Þ
2
þðy�y0Þ

2
ð4Þ

The exact solution is known: uexðx,yÞ ¼ ðx�x0Þ=ððx�x0Þ
2
þðy�y0Þ

2
Þ.

First, one chooses a uniformly distributed cloud (see Fig. 2). In
Fig. 1, we have plotted the error jðuðx,0Þ�uexðx,0ÞÞ=uexðx,0Þj along
the horizontal axis for three values of the degree. In this case, the
boundary collocation method converges with the order p, see
Fig. 1. For instance, for p¼32, the maximal error is about 10�3 and
the error in the center of the disk is about 10�6. The same
conclusion holds also by looking at the error anywhere in the
domain. Unfortunately, this simple collocation technique is not
robust and it does not work with an irregular cloud. For instance,

for p¼10 and the collocation points of Fig. 3, the maximal value of
the approximated solutions by this boundary collocation
technique is about 1075, instead of 4 for the exact one. It is not
surprising that this simple collocation technique does not work.
Indeed in the present example of a disk, the boundary value of the
polynom is given by a truncated Fourier series and the coefficients
vi are identical to the Fourier coefficients. In the present
technique, one tries to identify the Fourier coefficients from
pointwise data and with about two points per period 2p=p, which
is not sufficient for a stable estimate. Theoretically, the Fourier
coefficients are given by integral formulae:

1

p
R 2p

0 uðyÞcosnydy

1

p
R 2p

0 uðyÞsinnydy

8>><
>>: ð5Þ

To avoid the numerical evaluation of these integrals (5) that
involves many integration points, we shall propose to identify
these Fourier series from a number of pointwise data that is larger
than 2p+1 (Fig. 2).

2.3. Boundary least-squares collocation

It is proposed to identify the coefficients vi of the polynom (2)
from M collocation points, M being larger than 2p+1. The Dirichlet
boundary condition will be satisfied in a least-square sense. Such
a least-square collocation method has been presented by Zhang
et al. [18] in another meshless framework and it has been widely
applied. One requires that the coefficients vi minimize the
function

JðviÞ ¼
1

2

XM
j ¼ 1

juðx
j
Þ�udðx

j
Þj2 ¼

1

2

XM
j ¼ 1

X2pþ1

i ¼ 1

Piðxj
Þvi�udðx

j
Þ

�����
�����
2

ð6Þ

After few calculations, this minimization of (6) leads to a linear
system

½K�fvg ¼ fbg ð7Þ

where

½K� ¼
XM
j ¼ 1

½Kj� with Kj
ik ¼ Piðxj

ÞPkðxj
Þ ð8aÞ
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Fig. 1. Dirichlet problem in a disk. Pure boundary collocation with a uniform

cloud, see Fig. 2. Error along the horizontal axis.
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Fig. 2. Uniform distribution of collocation points, x0¼1.2, y0¼0.3.
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