
Contents lists available at ScienceDirect

Chemometrics and Intelligent Laboratory Systems

journal homepage: www.elsevier.com/locate/chemolab

Developments of two supervised maximum variance unfolding algorithms
for process classification

Chihang Weia, Junghui Chenb,⁎, Zhihuan Songa,⁎

a State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027 Zhejiang, China
b Department of Chemical Engineering, Chung Yuan Christian University, Chungli, Taoyuan 32023, Taiwan, ROC

A R T I C L E I N F O

Keywords:
Dimension reduction
Maximum variance unfolding
Process classification
Semi-definite optimization

A B S T R A C T

Maximum variance unfolding (MVU) has recently proven to be a powerful dimension reduction method for
nonlinear data with numerous mutually correlated measured variables. However, in classification work, MVU
performs poorly since it is an unsupervised method without considering class information of data. In this paper,
two novel supervised maximum variance unfolding (SMVU) algorithms, SMVU1 and SMVU2 are developed
respectively. They extend MVU to supervised methods. Both SMVU1 and SMVU2 not only aim to find the
embeddings that unfold the manifold in the reduced dimensional space but also group the within-class samples
together and separate between-class samples. In SMVU1, between-class manifold structures are defined by the
class separation constraints, and within-class manifold structures to be unfolded are defined by the objective
function; in SMVU2, between-class manifold structures to be unfolded and within-class manifold structures to
be folded are put together in the objective function. Additionally, a novel kernel function approximation
algorithm is developed based on the Nyström method to handle new samples. The effectiveness of the proposed
methods are illustrated through a simple nonlinear system and a real industrial polyethylene process. The study
results show the proposed SMVUs significantly outperform the conventional MVU in classification work.

1. Introduction

Automation in the operating refineries and chemical plants is
consistently increasing as witnessed during the last few decades
because of their large processing rates and complex configurations of
unit operations [1]. Moreover, it is needed because of the increasing
demand on consistent product quality and good process performance,
lack of adequately skilled labor and the necessity to lower costs in order
to keep pace with rapidly growing global competition. In the modern
plants with the extensive use of distributed control systems, process
data have become abundant and the measured variables are often
characterized by high dimensions. However, most of these dimensions
are unnecessary and there are often severe dependencies in the
variables because of a set of constraints, like mass and energy balances,
or operating policies [2–9]. This implies that the independent variables
or the important information among these data typically lie in a low
dimensional manifold. This means that only a few intrinsic variables
are needed to characterize the data variations and dimension reduction
is necessary to handle this kind of data. With these features, multi-
variate statistical process monitoring (MSPM) approaches have been
proposed to learn the data structure, to reduce the dimension and to

extract significant interests for performing supervisory tasks such as
process monitoring, fault detection and diagnostics [2–9].

Principal component analysis (PCA) [10] is one of the earliest
papers on dimension reduction in MSPM. Although PCA has been
proven to be useful in the process monitoring, the linear assumption
limits its applicable area and performance [11]. The kernel technique
has also been applied. It can extend traditional linear dimension
reduction methods to other nonlinear dimension reduction methods.
Kernel PCA (KPCA) [11,12] was proposed to generalize PCA to the
nonlinear case. However, the algorithm maps the high dimensional
data onto a lower dimensional space without considering the manifold
structure because the performance of KPCA largely depends on the
kernel function, but appropriate selection of kernel functions has been
sporadically discussed in the research literature. Unlike KPCA defined
by an artificially determined kernel function, maximum variance
unfolding (MVU) was proposed and it can automatically learn the
kernel space from the input data instead. It has been proven to be a
powerful dimension reduction method for nonlinear data with numer-
ous mutually correlated measured variables [13,14]. Ideally, MVU
represents the intrinsic dimension of the data. More importantly, the
boundary of the distribution region of the training samples in the input
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space is faithfully preserved. These features facilitate its process
monitoring applications [15–17].

MVU can learn the manifolds bottom up from the topology of the
input data, but the data representatives on the learned manifold are not
guaranteed to have desired properties such as classification. MVU only
projects the raw data onto the manifold with lowest dimension without
preserving the data topology at all when training samples with several
classes are applied, the unfolded manifold structure of each class may
be mixed together. Obviously, given this manifold, no linear classifier
can easily separate the data samples of different classes since MVU is
an unsupervised method. These features limit the applications of MVU
in classification work while the MVU kernel can only be expected to
perform well for large margin classification if the decision boundary on
the unfolded manifold is approximately linear. There is no a priori
reason, however, to expect this type of linear separability for different
classes.

In the past, as plant operators and engineers often spent a
substantial amount of time and efforts before the classes could be
properly diagnosed, several algorithms for the automatic process
classification had been developed based on the classification objective
and data topology [7,18–21]. The major motivation of this paper is to
develop two types of supervised MVUs. Supervised learning is the
machine learning task of inferring a “machine” from the labeled
training data. In supervised learning, each sample is a pair consisted
of a set of input variables and a corresponding desired output value. A
supervised learning algorithm analyzes the training data and produces
an inferred “machine”. The machine can be used for mapping new
examples which are not the original training data to correctly deter-
mine the class labels. In this paper, the unsupervised MVU modeling is
extended to two supervised ones, including Supervised Maximum
Variance Unfolding 1 (SMVU1) and Supervised Maximum Variance
Unfolding 2 (SMVU2). The purpose of the algorithms is to discover the
natural boundary from the given data with the label annotations. Both
algorithms aim at obtaining the separable unfolding of the low
dimension and preserving the data structure at the same time. They
are developed respectively based on the maximum variance embedding
objective used in the existing semi-definite programming (SDP) algo-
rithm [22] to unfold data and pull different class data apart. In SMVU1,
between-class manifold structures are defined by the class separation
constraints, and within-class manifold structures to be unfolded are
defined by the objective function; in SMVU2, between-class manifold
structures to be unfolded and within-class manifold structures to be
folded are put together in the objective function. But the two
optimization problems (SMVU1 and SMVU2) are not convex. A
simplified optimization by reformulating the SMVU1 and SMVU2
problems in terms of the elements of the inner product matrix is
developed. Then the computation kernel matrix is irrelevant to the
dimension of the data. Despite the favorable properties of the kernel
methods in terms of theory, empirical performance and flexibility, the
constructed kernel matrix is valid for the training samples only; it
cannot handle the new samples. In this work, the effectiveness of the
Nyström method to scale kernel regression is used to get the
approximate kernel function [23–25]. Then SMVU1 and SMVU2
algorithms learning from the labeled (or known) classes are developed.
They can predict the unknown classes using the Bayesian classifier
[26]. SMVU1 and SMVU2 use different types of constraints and
objective functions respectively to construct between-class and with-
in-class manifold structures. They have different scopes of applications.
They will be described and discussed in detail later in this paper.

The rest of the paper is organized as follows. Section 2 gives the
background knowledge of the MVU algorithm. Then the detailed
SMVU1 and SMVU2 algorithms are discussed in Section 3; the
differences among MVU, and SMVU1 and SMVU2 are also discussed
in this section. Next a kernel approximation method is given in Section
4. Section 5 contains the SMVU1 and SMVU2 based process classifica-
tion using the Gaussian naive classifier. Also, case studies of a simple

nonlinear system and an industrial problem are presented to evaluate
the proposed SMVU1 and SMVU2 algorithms in Section 6. Finally,
conclusions are made.

2. Revisit of maximum variance unfolding

Before discussing the proposed algorithms, the basic background
knowledge and concepts of MVU are introduced in this section. A
manifold is a mathematical surface that behaves linear locally.
Representing such data in its raw high dimensional-form is not
necessary. Euclidean distances are only meaningful on a very local
scale, and it is very hard to handle the whole data. Ideally one would
like to have a representation that matches the intrinsic dimension of
the data so that Euclidean distances can be globally meaningful.

MVU, also known as semi-definite embedding, has recently been
proposed as a special variation of KPCA utilized for nonlinear dimen-
sion reduction. The basic idea of MVU is based on the finding that the
high dimensional data lie on a low dimensional manifold. The kernel
matrix of KPCA, K, is obtained by projecting the input data onto a
higher dimensional feature space. The projection can be done by
subjectively specifying a certain kernel function. Unlike KPCA, MVU
directly constructs a kernel matrix from training samples so that the
data manifold in the input space can be unfolded in the kernel feature
space Φ implicitly defined by K. This also makes the manifold unfolded
in the reduced space of MVU [13,14]. The problem of learning K is
casted to an instance of SDP [22,27–29]. It is convex and it does not
suffer from local optima. In particular, given an input set
X x= { }n n

N
=1, Rx ∈n

D and an unfolding space Y y Φ x= { = ( )}n n n
N

=1,
Ry ∈n

d where d D< , one considers a map Φ x y: → so that the outputs
Y can be found and the inputs and the learned outputs are k-locally
isometric, or at least approximately isometric. Here N is the number of
samples while D and d are the dimensions of the input and the learned
manifolds. Thus, the objective function is to unfold a manifold based on
the observations, where any “fold” between two samples on a manifold
serves to decrease the Euclidean distance between them. To unfold the
manifold in Φ, an objective function that measures the sum of pairwise
squared distances between the outputs y Φ x{ = ( )}n n n

N
=1 is maximized:

∑Γ
N

Φ x Φ xmax = max 1
2

|| ( ) − ( )||
ij

i j
2

(1)

By maximizing Eq. (1), the outputs are pulled as far apart as
possible subject to some constraints, including isometry and centering.

• Isometry: This constraint is to preserve local manifold structure in
the kernel space. The isometry between the discrete point sets can be
translated into various sets of equality constraints on the inputs and
the outputs. Let RS ⊂ N N× be a binary adjacency matrix which can
tell whether there is an edge between xi and xj formed by pairwise
connecting all the k-nearest neighbors. Thus, x{ }n n

N
=1 and

y Φ x{ = ( )}n n n
N

=1 are locally isometric if xi and xj are themselves
neighbors (S = 1ij ) or common neighbors of another point in the
data set ( S S[ ] = 1T

ij ). The local isometry constraints can be written as

D i jΦ x Φ x x x S S S( ) − ( ) = − = for all ( , ) with = 1 or [ ] = 1i j i j ij ij
T

ij
2 2

(2)

• Centering: the centering constraint,

∑ Φ x( ) = 0
i

i
(3)

is also imposed to remove a translational degree of freedom from the
final solution.

The optimization problem is to maximize the variance of the
outputs Φ x{ ( )}n n

N
=1 (Eq. (1)) subject to the constraints that they are
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