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A B S T R A C T

A wide number of real problems requiring qualitative answers should be addressed by one-class classification
(OCC), as in the case of authentication studies, verification of particular claims and quality control. The key
feature of OCC is that models are developed using only samples from the target class, so that a representative
sampling is not strictly required for non-target classes. On the contrary, in the discriminant analysis (DA)
approach, all of the classes considered (at least two) have a non-negligible influence in the definition of the
delimiter. It follows that faults in the definition of the classes involved and in representative sampling for each of
them may determine a bias in the classification rules. A key aspect in one-class classification concerns model
optimisation. When the optimal modelling conditions are searched by considering parameters such as type II
error or specificity (‘compliant’ approach), information from the non-target class is being used and may
therefore determine a bias in the model. In order to build pure class models (‘rigorous’ approach), only
information from the target class should be regarded: in other words, optimisation should be performed only
considering type I error, or sensitivity. In the present study, ‘compliant’ and ‘rigorous’ approaches are critically
compared on real case studies, by applying two novel modelling techniques: partial least squares density
modelling (PLS-DM) and data driven soft independent modelling of class analogy (DD-SIMCA).

1. Introduction

One-class classification (OCC) [1,2] consists in making a descrip-
tion of a target class of objects and in detecting whether a new object
resembles this class or not. The term class modelling is often used for
denoting OCC methods [3]. In some sense, this approach is opposite to
the discrimination problem that is to allocate a new object to one of
distinct and exhaustive classes [4]. The critical difference between OCC
and discriminant analysis (DA) is that the OCC model is developed
using target class samples only.

The work of Harold Hotelling on multivariate quality control (1947)
can be considered as the first example of multivariate one-class
classification in chemistry [5]. The unequal class models (UNEQ)
method was developed by Derde and Massart (1986) as an evolution
of these concepts [6]. In fact, such a method – closely related to
quadratic discriminant analysis (QDA) – is based on the hypothesis of a
multivariate normal distribution in the class to be modelled and defines
the width of the class space based on Hotelling's T2 statistics, at a
selected confidence level.

The first method specifically developed for one-class classification
in chemometrics was soft independent modelling of class analogy
(SIMCA), by Svante Wold [7,8]. This method performs PCA on the

samples of the class to be modelled – the SIMCA model being defined
as the range of sample scores on the significant PCs. A critical distance,
at a given confidence level, is obtained by application of the Fisher F
statistics to residuals of each training sample to the model, and is used
to define the boundaries of the SIMCA class space around the model.

OCC modelling is a rather new strategy in comparison with DA. The
classical OCC version does not utilise any information about non-target
(extraneous) classes, even when the data regarding such extraneous
classes is available. We call such an approach a ‘rigorous’ one.
Contributing to the OCC technique elaboration, we consider the
outcomes that can be yielded in case the rigorous concept is violated.
The most common violation – which we call a ‘compliant’ approach –
makes use of some relevant non-target information that can influence
the results of the OCC modelling.

The main objective of the present study is the comparison between
the outcomes of ‘rigorous’ and ‘compliant’ approaches. For this
purposes, two different OCC methods, namely, partial least squares
density modelling (PLS-DM) [9], and data-driven soft independent
modelling of class analogy (DD-SIMCA) [10] are employed. Method
descriptions are presented in Sections 3.1 and 3.2. An additional goal is
to compare these techniques using two real world examples.
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2. Theory

2.1. Figures of merit

Performances of one-class classifiers are usually reported using two
parameters: sensitivity and specificity. Sensitivity is the fraction of
samples of the target class which are correctly recognised as consistent
with the model. It can also be defined as the rate of true positives and,
therefore, it is complementary to type I error (i.e., the false negative
rate). Specificity is the fraction of samples extraneous to the target class
which are correctly recognised as inconsistent with the model, corre-
sponding to the rate of true negatives. This parameter is therefore
complementary to type II error (i.e., the false positive rate). Efficiency
of one-class classifiers is usually defined as the geometric mean of
sensitivity and specificity [11].

When sensitivity and specificity are considered, it is very important
to realise on which sample subset each parameter was calculated. First
of all, let us consider the type I error, α. At the stage of model building,
some OCC methods enable to set a prior value of α and to use it for
establishing the corresponding threshold. After that, it is possible to
calculate sensitivity for the training set, referred to as SENS_T in the
following sections. This value is a classification analogue of the root
mean square error of calibration (RMSEC) for calibration problems. It
is important to verify that SENS_T is in agreement with the a-priori α
value. Varying the α value, it is possible to control the risk of wrong
rejections of target objects. The value of sensitivity that characterises
the quality of predictions should be calculated as the fraction of
samples from the target test set which are correctly recognised
(SENS_P). In this case, SENS_P is the classification analogue of the
root mean square error of prediction (RMSEP). We can also calculate
sensitivity using the cross-validation approach. The corresponding
value is referred to as SENS_V. It is worth mentioning that calculation
of sensitivity as the fraction of all samples form the target class
(training plus test samples) can provide misleading results, especially
in case the test set is rather small.

For OCC models, specificity is calculated only in the presence of
non-target objects. This figure of merit is obtained empirically or, for
some OCC method, it can be calculated theoretically [12] as the type II
error, β. In case non-target objects are organised in several extraneous
classes, specificity should be calculated for each extraneous class
separately; otherwise, the reported value of specificity would not reflect
the true relationships between the target and alternative classes. Such
an example is presented below in Section 4. At the same time, total
specificity can be reported, if the customer is not interested in the
details.

It should be mentioned that both sensitivity and specificity depend
on the selected value of type I error, α. The first parameter has a direct
relation: SENS=(1–α). Conversely, dependence of specificity is more
complex and will be considered in Section 4.

2.2. ‘Rigorous’ vs. ‘Compliant’ approach

We distinguish two approaches when building OCC models. We call
the first one ‘rigorous’ OCC. This means that a model is developed
based merely on the target training dataset, and optimal conditions are
obtained employing the type I error, α (the rate of wrong rejections of
the target samples), or sensitivity, computed as (1-α). Depending on
the method, this α value may be estimated a-priori, and/or calculated
a-posteriori. This evaluation is made using the target samples only.
Considering that sensitivity is an experimental estimate of type I error,
α, of a given model, outcomes whose sensitivity is closest to (1-α)
should be considered as optimal, when optimising a model in a
‘rigorous’ way.

The second approach is called here ‘compliant’ OCC. Such a very
common modelling strategy utilises additional information regarding
non-target samples when, except for data from the target class, one/

several datasets from extraneous classes are available. For each
alternative class, the type II error, β (the rate of wrong acceptances
of objects from the alternative class), or the corresponding specificity,
computed as (1-β), is estimated. In this case, model optimisation is
performed with respect to the estimates of both α and β and the OCC
model that has maximum efficiency is selected.

2.3. Data driven soft independent modelling of class analogy (DD-
SIMCA)

The DD-SIMCA method develops a decision rule that delineates the
objects from the target class by exploring the corresponding data
matrix. The procedure consists of two steps. The first step is the
application of principal component analysis (PCA) [13], establishing a
model using training samples from the target class. The (I×J) data
matrix X (duly pre-processed, e.g. centred) is decomposed by:

X TP E= +t (1)

where T={tia} is the (I×A) scores matrix; P ={pja} is the (J×A)
loadings matrix; E ={eij} is the (I×J) matrix of residuals; and A is
the number of principal components (PC). Matrix TtT=Λ=diag(λ1,…,
λA) is a diagonal matrix with elementsλ t= ∑a i
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eigenvalues of matrix XtX ranked in descending order.
In the second step, we employ the PCA results when calculating two

relevant distances for each object i=1,…, I of the training set. They are
the score distance (SD), hi, and the orthogonal distance (OD), vi:
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SD represents the position of a sample within the score space, while
OD characterises a sample distance to the score space.

In a previous study [14], it was shown that distributions of both
distances are well approximated by the scaled chi-squared distribution:
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where v0 and h0 are the scaling factors, Nh and Nv are the numbers of
the degrees of freedom (DoF). These parameters are considered
unknown and estimated using a data-driven method explained in ref.
[10].

Statistics c, called the total distance:
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is used to generate the decision rules. Any decision rule (i.e., an
acceptance area) is determined by an inequality:

c c≤ crit (5)

The first decision rule is developed for a given type I error, α:

c χ α N N= (1 − , + )h vcrit
−2 (6)

where χ–2 is the quantile of the chi-squared distribution with Nv+Nh

DoF. To calculate the type II error β, we should assume that an
alternative class is available:
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where ccrit is defined in Eq. (5) and χ‘2 is the non-central chi-squared
distribution. Parameters c′0 and s are found by the method explained in
ref. [12].

Using this approach, every sample and the acceptance areas can be
plotted in the coordinates of h/h0 against v/v0. Fig. 2 illustrates an
example of this distance plot. Applying theory (Eqs. (6) and (7)) in
practice, we can yield two acceptance areas. First, we can develop a
‘rigorous’ decision rule defined by a given α, and then calculate a
subsequent β error. On the other hand, we can employ a ‘compliant’
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