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A B S T R A C T

Three dimensional data structures such as batch process data or infra-red spectral measurements usually
contain inconsistent trajectories of various durations and quality. In the case of batch process data, most
modeling methods require the data from all batches to be of same duration. For spectral data, peaks might be
shifted from one sample to another due to unaccounted sources of variation. These inconsistencies are usually
resolved through trajectory alignment (or synchronization) methods. In this paper, we first review the
deficiencies of existing approaches. Next, a Constrained selective Derivative Dynamic Time Warping
(CsDTW) method is proposed to perform automatic alignment of trajectories. Different from conventional
methods, CsDTW preserves key features that characterizes the batch and only apply warping to regions of least
impact to trajectory characterization. The proposed warping technique is applied to both industrial and
simulated datasets to demonstrate its effectiveness.

1. Introduction

Batch processes are commonly used in manufacturing of specialty
chemicals, pharmaceutical, and agricultural products. However, quality
measurements of the product usually come with considerable time
delay. There has been a tremendous amount of effort and demonstrated
success in building and deploying data-driven inferential sensors that
could predict key quality measurements to improve batch process
reliability and performance [1–6]. However, a challenge frequently
encountered in these modeling efforts is the need for pre-processing of
batch data [7]. Data collected from batch processes are inconsistent in
duration and across different variables and batches. In addition, time
series data in general also experiences analogous problems when
comparisons are required. In these cases, it is desirable to make sure
the important trajectory features in the data (rise, overshoot, drop-off,
peaks, valleys) are aligned. Fig. 1 illustrates the goal of trajectory
alignment and its impact on subsequent batch process modeling. In
batch process modeling, it is desirable to not only align geometric
trajectory features (rise, decay, peaks and valleys), but also event
boundaries across different phases. Proper alignment not only im-
proves the performance of modeling techniques, but also the inter-
pretability of the resulting model. In addition to modeling, dynamic
time warping methods have also been used in fault detection [8] and

root-cause analysis of batch processes [9] (Fig. 2).

1.1. Overview of existing trajectory alignment techniques

There are many methods in practice that aim to synchronize
trajectories of that are of different durations. These methods differ in
computational complexity and also their alignment objective. Table 1
provides a brief summary of the advantages and disadvantages of each
method.

There is no alignment method that is universally superior. It is
often necessary to attempt multiple alignment solutions to determine
the most appropriate method for the given problem. Below, we briefly
introduce the key concepts and the mechanisms behind each alignment
technique.

1.1.1. Truncation and padding
In truncation and padding, the alignment technique is very simple

and is based mostly on intuition. The assumption made in truncation
and padding is that the initial and the end of the time series data are
not as important as the middle section of the data. When this
assumption is valid, the longer time series trajectory can be simply
shortened by removing the head or the tail of the data series. For
shorter trajectories, average value from the head or tail of the data
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series is calculated and then padded on to extend the length of the
trajectory being aligned.

This method guarantees that the processed trajectories are of equal
length. However, this method does not ensure that the dynamic
features within the time series data are properly aligned. As a result,
its fidelity is often not as high as other advanced methods. However,
due to its simplicity and ease of use, simple truncation or padding
could serve as an effective first-pass in assessing the nature of the batch
dataset being analyzed.

Lastly, truncation and padding offers the minimal amount of
information loss and distortion to the given trajectory, and preserves
all the dynamic features provided that the features of interest are not in
the truncation region (head or tail region of the trajectory).

1.1.2. Linear time scaling
Linear time scaling (LTS) is another popular alignment technique

that is easy to execute and very efficient. This alignment method has
been made available in many commercial data analysis software
packages. In linear time scaling, a batch maturity variable is chosen
from the available measurements. This variable is required to be
monotonic and should ideally be indicative of the progress of a batch
process. For example, if an accumulation reaction takes place inside a
CSTR reactor with no outlet stream, then the level of the reactor could
be an indicator of the progress of reaction. Since the level of the tank
will always start empty and increases until it is full, each level reading

corresponds with an unique one-to-one mapping towards the progress
of that particular batch.

To perform alignment, the indicator variable p is discretized from
its initial value to the final value:
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The number of discretization points (K) is a controllable parameter,
but is usually set to the average number of samples in each batch
observation. At each discretized value of the indicator variable pk,
linear interpolation is then performed for every measurement xj.
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where superscripts a and b represents the nearest boundary indices
that encloses the value pk. This results in K number of measurement
vectors xk for k K∈ (1, ). Since every batch will be interpolated to these
K samples after LTS, the trajectories will be aligned and ready for
subsequent analysis steps.

The main advantage of LTS is that this is a very efficient technique
to align multiple trajectories at the same time. Provided that an
accurate linear batch progress indicator variable can be found (mean-
ing that the value of this variable varies linearly from the start to the
end). The main drawback of LTS method is the reliance of a maturity
variable. Since this variable is used essentially to replace “time” as an
alternative batch progress indicator, improper selection or unavail-
ability of such a variable greatly affects the result of LTS method.
However, ways to circumvent this problem using within batch PLS
models have been reported [10].

Fig. 1. Motivation for performing batch trajectory alignment. (a) Actual trajectory from
a batch process showing misalignment (b) Schematic showing the trajectory alignment
workflow.

Fig. 2. Example solution of the Dynamic Time Warping Problem, figure taken from [15].

Table 1
Summary and assessment the warping methods for trajectory synchronization.

Method Description Advantages Disadvantages Speed

Truncation
and
Padding

Delete longer
time series or
pad shorter time
series data to the
same length
based on a
golden reference
trajectory

Easy-to-
implement

Does not
explicitly align
features

Fast

Linear Time
Scaling

Use a monotonic
batch evolution
indicator
variable (percent
completion,
product
concentration,
tank level) and
stretch or shrink
linearly to
ensure every
trajectory is of
the same length

Straightforward Performance
dependent on
good indicator
variable

Fast

Dynamic
Time
Warping

Solves dynamic
programming
problem to find
the most similar
path between
two trajectories

Explicit feature
alignment

Information loss,
trajectory
distortion,
implementation
challenge

Medium

Correlation
Optimiz-
ed
Warping

Solves dynamic
programming
problem with
sub-optimization
routines to
maximize
correlation
between
trjaectory

Explicit feature
alignment, less
distortion than
DTW

Information loss,
complex,
implementation
challenge

Slow
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