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A B S T R A C T

This paper illustrates methods to improve uncertainty quantification (UQ) for non-destructive assay (NDA)
measurements used in nuclear nonproliferation. First, it is shown that current bottom-up UQ applied to
calibration data is not always adequate, for three main reasons: (1) Because there are errors in both the
predictors and the response, calibration involves a ratio of random quantities, and calibration data sets in NDA
usually consist of only a modest number of samples (3–10); therefore, asymptotic approximations involving
quantities needed for UQ such as means and variances are often not sufficiently accurate; (2) Common practice
overlooks that calibration implies a partitioning of total error into random and systematic error, and (3) In
many NDA applications, test items exhibit non-negligible departures in physical properties from calibration
items, so model-based adjustments are used, but item-specific bias remains in some data. Therefore, improved
bottom-up UQ using calibration data should predict the typical magnitude of item-specific bias, and the
suggestion is to do so by including sources of item-specific bias in synthetic calibration data that is generated
using a combination of modeling and real calibration data. Second, for measurements of the same nuclear
material item by both the facility operator and international inspectors, current empirical (top-down) UQ is
described for estimating operator and inspector systematic and random error variance components. A Bayesian
alternative is introduced that easily accommodates constraints on variance components, and is more robust
than current top-down methods to the underlying measurement error distributions.

1. Introduction

In metrology, uncertainty is a term that characterizes the dispersion
of estimates of a true quantity known as the measurand. In applications
of NDA used in nuclear nonproliferation, the measurand is typically the
amount of special nuclear material (SNM, such as U or Pu) in an item.
NDA uses calibration and modelling to infer SNM mass on the basis of
radiation particles, such as neutrons and gammas emitted by the item
and registered by detectors. An example used throughout this paper is
a common NDA technique consisting of a gamma detector that can be
calibrated to measure the 235U enrichment (atom percent of 235U/U in
an item) by applying the enrichment meter principle (EMP, see Section
3). For any NDA technique, one can take a first-principles physics-
based or “bottom-up” approach to UQ by considering each key step and
assumption of the particular method. Because most NDA methods rely
on a calibration step, and because calibration uncertainty has not been

adequately quantified for NDA applications, this paper focuses on
calibration as an example of bottom-up UQ. The second focus is a new
Bayesian approach to “top-down” UQ. Top-down UQ compares mea-
sured values for selected items to their corresponding nominal values,
or to other measurements on the same items (Section 4).

A well-known guide for bottom-up UQ in metrology is the Guide to
the Expression of Uncertainty in Measurement [20]. The GUM also
briefly mentions top-down UQ in the context of applying analysis of
variance to data from inter-laboratory comparisons, in which multiple
measurements are made on the same or similar items by multiple
laboratories. Although the GUM is useful, it is being revised because it
has known limitations [2]. For example, the GUM uses Bayesian and
frequentist concepts without clearly distinguishing them [17,37,5], and
provides very little technical guidance regarding calibration as an
example of bottom-up UQ, or regarding top-down UQ.

In the NDA applications considered, the facility operator declares
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the SNM mass in each item. Some of those items are randomly selected
for verification measurement by inspectors, who often use NDA. This is
a challenging NDA application, because the detector is brought to the
facility where ambient conditions can vary over time, and because the
items to be assayed are often heterogeneous in some way. Because of
such challenges, “dark uncertainty” [33]; Wuester et al., 2016) can be
large, as is evident whenever bottom-up UQ predicts smaller uncer-
tainty than is observed in top-down UQ [4]. Here, the term “un-
certainty” is used in a general sense, and is defined by context; for
example, the uncertainty of an assay method is often defined as the
reproducibility standard deviation as estimated in an inter-laboratory
comparison [15]; ISO 21748:20, 2010; [35]. Verification measure-
ments are regarded as a special case of an inter-laboratory evaluation
(Sections 2 and 4).

For top-down UQ applied to SNM measurements of the same item
by both the operator and the inspector, this paper describes current
approaches to estimate operator and inspector systematic and random
error variance components separately. Systematic errors and random
error components must be separated because their mode of propaga-
tion can be different, depending on the context and end use. Currently,
random error variance estimates (from paired data) are based on the
Grubb's estimator, or variations of the Grubb's estimator, which was
originally developed by Grubb's to separately estimate random error
variance of each of two methods applied to each of several items,
without repetition of measurement by either method [19,26]. These
applications of Grubb's estimators are illustrated, and a simple but
effective Bayesian alternative to the Grubb's estimator is introduced, so
that parameter constraints and prior information regarding the relative
magnitudes of variance components can be exploited to improve top-
down UQ.

This paper is organized as follows. Section 2 gives background on
UQ for NDA. Section 3 describes the EMP and illustrates why
simulation is necessary for improved bottom-up UQ for calibration
data. Section 4 reviews currently-used top-down UQ and introduces a
new Bayesian option that applies approximate Bayesian computation.
Section 5 is a discussion and summary.

2. Background

The need to improve UQ for NDA measurements is recognized
[4,5,7,8], partly from observing larger uncertainty in top-down UQ
applied to paired measurements from the operator and inspector than
currently-used bottom-up UQ predicts. Statistical perspectives of these
observations are described in the next sub-sections.

2.1. Bottom-up UQ

For bottom-up UQ, the GUM assumes the measured value is
produced in a manner that can be expressed using a measurand
equation or algorithm that relates input quantities (data collected
during the measurement process and relevant fundamental nuclear
data used, for example, in attenuation corrections) to the output (the
final measurement value).The GUM's main technical tool is a first-
order Taylor approximation applied to the measurand equation

Y f X X X= ( , , ... , ),N1 2 (1)

which relates input quantities X X X, , ... , N1 2 to the measurand Y. The
input quantities can include estimates of other measurands, or of
calibration parameters, so Eq. (1) is quite general. The estimated
variance of each X, σ ,i

2 and any covariances, σ σ ρ ,i j i j, between pairs of
Xs are then propagated using the Taylor approximation to obtain

⎛
⎝⎜

⎞
⎠⎟σ σ σ σ ρ≈ ∑ +2 ∑ ∑Y i

N f
x i i

N
j i
N f

x
f
x i j i j

2
=1

∂
∂

2
2

=1
−1

= +1
∂
∂

∂
∂ ,i i j

(or using simulation if the

Taylor approximation is not sufficiently accurate) to estimate the
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The GUM does not clearly distinguish between Bayesian and

nonBayesian methods. However, Eq. (1) is expressed in a convenient
form for application of first-order Taylor series and for depicting that
the estimated value Y of the measurand is a random variable,
regardless of whether the left side of Eq. (1) is expressed as Y or as
μY . The hat notation is a convention for denoting an estimator, so μY is
a random variable, and μY (which is also denoted as y ,T where the “T”
denotes the true value) denotes the unknown true value of the
measurand. In some cases, there could be a function, not necessarily
with the same function f() as in Eq. (1), relating the true inputs to the
true outputs y g x x x= ( , , ... , )T T T N T1, 2, , . In a nonBayesian framework, the
true quantities are regarded as fixed and unknown constants. In a
Bayesian framework, even the true quantities are regarded as random
variables. The GUM also does not describe calibration in much detail;
in the statistical literature on calibration, the true response μY is nearly
always written as being a function of the true measurand value μX .
Therefore, Section 3 assumes a simple model, μ β β μ= +Y X0 1 and the
roles of X and Y are reversed from that in Eq. (1).

2.2. Calibration UQ as an example of bottom-up UQ

Following calibration of the EMP using reference materials having
nominal values of enrichment of 235U (known to within relatively small
uncertainty), Eq. (1) can be expressed as μ β β X= +Y O N1 , where μY is

the estimated enrichment, β0 and β1 are parameters estimated from
calibration data, XN is the net gamma count rate in the spectral region
of interest, and three uncertain inputs in mapping to Eq. (1) are
X β=1 0, X β=2 1, and X X= N3 . The estimates β0 and β1 will vary in
predictable ways across repeats of the calibration.

In Section 3, the convention in most statistical literature to reverse
the roles of X and Y from that in Eq. (1) is followed, so X denotes the
quantity to be inferred (the measurand value here) and Y denotes the
detected radiation count rate. Then, in the case of reverse regression
(see Section 3), Eq. (1), for a different f() from the f() in Eq. (1), can be
expressed as X f Y Y Y α α Y= ( , , ..., ) = +N1 2 0 1 , identifying Y β=1 0, Y β=2 1,
and Y Y=3 . Following calibration on training data consisting of n (xi,yi)
pairs (lower case denotes observed value of random variables), the
three “input quantities” Y β=1 0, Y β=2 1, and Y Y=3 have variances and
covariances that can be estimated. However, in most applications of
calibration in NDA, accurate estimation of these variances and
covariances requires simulation because analytical approximations
have been shown to be inadequate (Section 3). Section 3 illustrates
that extensions to standard regression results applied to the special
case of Eq. (1), μ β β X= +Y O N1 for bottom-up UQ are not sufficiently
accurate, and so simulation is used to perform bottom-up UQ,
including assessment of item-specific bias and long-term bias.

Elster [17] notes that the GUM provides almost no quantitative
guidance on bottom-up UQ for calibration (but more guidance is
planned in a future GUM version). Toward using GUM's Eq. (1) in
simple calibration examples, note that Eq. (1) assumes that f() is
known and deterministic, and that the X's are random variables,
possibly having nonzero correlations. This implies that Y is a random
variable. Hence, the GUM implicitly takes a Bayesian approach, which
is now recognized [17], with a known probability density if the X's have
known probability densities, or a known variance if only the variances
of the X's and covariances between the X pairs are known. However, in
some applications, f() is not perfectly known, or there is some modeling
error not captured in f(), so one could include an error term in Eq. (1).
It is case-specific whether including such an error term is needed. In
the case of simple linear calibration in Section 3, the GUM assumption
that f() is known exactly is reasonable, and expressing Eq. (1) as
X f Y Y Y α α Y= ( , , ..., ) = +N1 2 0 1 , indicates how the estimate X is com-
puted, and how to assign both “systematic” and “random” error
variances to X (Section 3). For example, and to introduce notation
used in top-down UQ (Section 2.3), one could express the estimate as
X μ S R= + +X , where μX denotes the true value of the measurand, S
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