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ARTICLE INFO ABSTRACT

Keywords: A particle swarm optimization (PSO) based sparse regression (PSO-SR) strategy was proposed to study the
Quantitative structure-activity relationship quantitative structure-selectivity relationship (QSSR) of a biomimetic catalytic system, where the selectivity in
(QSAR) the mild oxidation of o-nitrotoluene to o-nitrobenzaldehyde was related to the molecular descriptors of 48
%’:;;i)taﬁve structure-selectivity relationship metalloporphyrin catalysts. PSO was used to obtain an optimal variable combination for linear or nonlinear

models. For nonlinear modeling, a set of 44 nonlinear transforms were developed for each single descriptor. To
enable model interpretability and reduce the risk of overfitting, the total descriptors were divided into
subclasses and the selected variables were forced to be sparsely distributed in each subclass. Model complexity
was controlled by adjusting the maximum total number of variables included. Accurate linear and nonlinear
PSO-SR models were developed using multiple linear regression (MLR) and partial least squares (PLS) and
validated by randomly and repeatedly splitting the data into training and test objects for 500 times. The best
predictions were obtained with 10 variables with linear (Q*=0.9460) and nonlinear (Q*=0.9505) models. The
results indicate PSO-SR could provide an effective and useful strategy for modeling and interpreting complex
QSSR problems. The proposed nonlinear modeling method could provide more information for model
interpretation by probing and catching the unknown nonlinear relationship between a descriptor and the
observed selectivity.

Metalloporphyrin catalysts
Selective oxidation
Sparse regression (SR)

1. Introduction

Over the past half century, quantitative structure-activity/property
relationship (QSAR/QSPR) modeling methods have been widely used
in many fields, including chemistry, pharmacology, biology, materials,
and environmental sciences. QSAR builds a bridge between a specific
activity of interest for a group of molecules and their structure derived
descriptors by means of a mathematical model. Originating from the
seminal linear regression QSAR models by Hansch and Fujita [1,2], the
current arsenal of QSAR regression techniques consists of various
mathematical methods such as multiple linear regression (MLR) [3,4],
partial least squares (PLS) [5,6], principal component regression (PCR)
[7,8], artificial neural networks (ANNs) [9-16], kernel regression
[17,18], support vector machines (SVMs) [19-24], classification and
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regression trees (CARTS) [25,26], and others [27-30].

During the history of QSAR, the interpretability and predictive
ability have been two important aspects of a QSAR model, from which
two main branches of QSAR have evolved [31-33]. On one hand, the
interpretability of a QSAR model emphasizes that the mechanisms of
molecular activities should be explicitly explained in physicochemical
sense [34]. As in the “pure” or classical QSAR studies, a descriptive and
relatively simple model is developed, which is often based on free
energy relationships and combination of single mechanisms, such as
the electronic, hydrophobic, lipophilic, and steric properties. Because
the main aim of this type of QSAR models is interpretation rather than
prediction, they are usually local models developed on a small set of
similar molecules and their application domain is limited. Besides the
advantage of obtaining mechanism insights, these interpretation-
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oriented models are more likely to reveal causative relationships and to
reduce the risk of chance correlations [35]. On the other hand, the
predictive ability of a QSAR model focuses on making reliable predic-
tions of properties of new molecules [36,37]. A QSAR model primarily
for predictions is usually trained and validated using large data sets
with considerable chemical diversity. Because the chemicals in these
data sets are usually non-congeneric and do not necessarily have a
common core structure, it is very likely that multiple rather than single
modes of action or mechanisms will be involved. Therefore, non-
empirical and computational molecular descriptors and much more
complex nonlinear modeling techniques are increasingly used to model
the relationship between structures and activities [38—40]. Although it
is more difficult to explain the models, with sufficient validation of
predictive power, these models will enable reliable predictions of the
properties for a wide range of new molecules, which is very useful for
optimizing leads and predicting or screening for new molecules of
interest from a large library. Both of the above two types of QSAR
models have been widely and successfully used and the pursuit of more
predictive and interpretable QSAR models is still a major challenge of
QSAR field.

Metalloporphyrins (Fig. 1), a class of organometallic complexes,
have been a hot research field for decades due to their biological
significance and applications [41-43]. Motivated by the bioactivities of
cytochrome P450 enzymes, the effects of modified metalloporphyrins
in catalyzing the oxidative hydroxylation of alkanes (C-H bond) using
oxygen under mild conditions have been intensively investigated
[44,45]. During the process of seeking more effective metalloporphyrin
catalysts, it has been recognized that the catalytic activity of metallo-
porphyrins largely depends on their structural characteristics, such as
the type of the central metal ion, axial ligands, and peripheral
substituents [46]. Therefore, in our previous studies [47], efforts have
been made to obtain improved catalytic activity by modifying the
structures of metalloporphyrins. However, it was found that such
efforts do not necessarily bring satisfying results, because the catalytic
activity is not always consistent with the selectivity of target products,
which will largely influence the economic viability and resource
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Fig. 2. Metalloporphyrin catalysts used in mild selective oxidation of o-nitrotoluene to
o-nitrobenzaldehyde.

availability of a reaction. Unlike the widely investigated enantiomeric
selectivity, where only two chiral isomers are involved and the observed
enantiomeric excess (ee) can usually be explained by electronic or/and
steric effects around the chiral center [48—51], the selectivity of a
general and non-chiral catalysis system would be more complex and
may involve multiple, parallel or/and subsequent reaction paths.

Therefore, a quantitative structure-selectivity relationship (QSSR)
[52-56] model is required to link the structures of metalloporphyrin
catalysts to the selectivity of target products. The QSSR model should
present insights into the mechanisms and major influencing factors of
selectivity, provide clues about how to design novel and efficient
metalloporphyrin catalysts, as well as to enable the predictions of
selectivity for new catalyst molecules. The objective of this work was to
develop a QSSR model for the metalloporphyrins in catalytic oxidation
of o-nitrotoluene to o-nitrobenzaldehyde as shown in Fig. 2. In order to
ensure the interpretability and predictive ability, a novel sparse
regression (SR) strategy was proposed using particle swarm optimiza-
tion (PSO) algorithm [57-61] to model and interpret the complex
selective mechanisms of metalloporphyrins.

2. Materials and methods
2.1. Experimentals

A set of 48 metalloporphyrins as shown in Fig. 1 and Table 1 were
synthesized using the method in references [62,63]. O-nitrotoluene
(0.06 mol), NaOH (0.75 mol), metalloporphyrin catalyst (3x107° mol)
and methanol (300 mL) were added to a 600 mL high-pressure
laboratory-scale reactor. The reaction was carried out at 45 °C under
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Fig. 1. Parent structures and substitutes of 48 metalloporphyrin catalysts.
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