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The problem of computing singular and hypersingular integrals involved in a large class of boundary

value problems is considered. The method is based on Green’s theorem for calculating the diagonal

elements of the resulting discretized matrix using the Nyström discretization method. The method is

successfully applied to classical boundary value problems. Convergence of the method is also discussed.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The mathematical treatment of the scattering of time-harmo-
nic acoustic or electromagnetic waves by an infinitely long
cylindrical obstacle with a simply connected bounded cross-
section O � R2, leads to the exterior Helmholtz equation

ðDþ k2
Þu ¼ 0 in R2

nO, (1.1)

where k40 is the wave number and the field u is decomposed,
u ¼ uinc þ us, into the given incident field uinc , which is assumed to
satisfy the Helmholtz equation everywhere, except possibly at
isolated points in R2, and the unknown scattered field us, which is
required to satisfy the Sommerfeld radiation condition

lim
jxj!1

jxj1=2 @us

@jxj
� ikus

� �
¼ 0, (1.2)

uniformly in all directions. Depending on the physical nature of
the scattering obstacle, the total field u has to satisfy a boundary
condition on G, the boundary of O. Usually the following
boundary conditions are considered

1. Dirichlet condition:

u ¼ 0; (1.3)

2. Neumann condition:

@

@nu ¼ 0, (1.4)

where n is the unit outward normal, which is assumed to be
directed to the exterior; and

3. Transmission condition:

@

@n
u ¼ r @

@n
ui, (1.5)

u ¼ ui, (1.6)

where r is a non-zero complex constant and ui satisfies the
Helmholtz equation in O, with k replaced by ki.

In acoustics the Dirichlet (resp. Neumann) condition corresponds
to sound soft (resp. hard), whereas in electromagnetics it models
scattering from a perfect conductor with the electromagnetic field
H (resp. E)-polarized. The transmission condition corresponds in
acoustics (resp. electromagnetics) to the continuity of pressure
and normal velocity (resp. scattering from a dielectric).

The problem of determining the unknown function us, for the
above stated equations, with arbitrary shape of O and wave
number k, is not an easy task. Usually a tedious and costly
numerical calculation is expected.

Many numerical solutions have been considered. The finite
element and finite difference methods could be used to compute
the unknown field, but they involve a discretization of the two-
dimensional (2D) space, which is a heavy numerical task,
especially for high wave numbers. Moreover it is impossible to
discretize to infinity, and one has either to couple the finite
element with boundary element using artificial boundaries or
select a cut-off at some arbitrary distance from the obstacle and
implement there the Sommerfeld radiation condition (cf. [15] and
the references therein).
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One of the most popular strategies in recent years is the plane-
wave decomposition method (PWDM) [12,26]. The method is
based on the assumption that each (discretized) solution can be
approximated by an ansatz of the superposition of plane waves, at
a given wave number. The ansatz solves the Helmholtz equation in
the discretized system and the boundary condition determines
the unknown functions. This method, thus, reduces the calcula-
tions to a one-dimensional (1D) boundary grid instead of the 2D
space. The problem of creating discretizations (‘‘meshing’’) is well
known to be a difficult task—almost an art, and the simplicity
achieved by a reduction in dimensionality must not be under-
estimated. The PWDM is found to be extremely efficient in
practice. However, solutions of non-convex boundaries, in general,
cannot be approximated by any solution of the Helmholtz
equation regular everywhere (in particular, by linear combina-
tions of a finite number of plane waves having the same energy)
[11]. From this we see that PWDM cannot be applied efficiently to
important types of shapes.

The main useful numerical strategies that have been suggested
in the literature, for arbitrary shapes, are based on boundary
integral approach and often referred to as boundary integral
method (BIM). This strategy, which requires 1D grid calculations,
is very similar to the PWDM. It is also based on the observation
that the solutions are completely determined by their behavior
at the boundary, and use basis functions that satisfy the
Helmholtz equation in the system at fixed wave number. A
linear combination of the basis functions is then selected
such that the boundary conditions are satisfied. The method is
derived from exact integral equation using Green’s theorem
and/or layer potentials [4]. Several versions of the BIM exist
depending on the choice of basis functions and discretization
[17,6,13].

A hybrid boundary method unifying BIM and PWDM has been
developed in [6]. This method, called the gauge freedom method
(GFM), has as its main advantage the choice of a regular kernel in
the integral equation.

BIM approaches are fundamental tools in both the numerical
solution and in the theoretical analysis. Uniqueness and existence
theorems are often much easier established in this way.

Another major advantage of the integral equation representa-
tion for external problems is that these ensure that the
Sommerfeld radiation condition is automatically satisfied exactly.
While considerable progress has been made in developing the so-
called perfectly matched layers to imitate the properties of the
far-field, these are relatively difficult to implement.

Despite these advantages the integral equation approaches
have some minor disadvantages. The first is that their formulation
is relatively more complex mathematically. However, this need
not be an obstacle to their understanding and implementation,
since there are many relatively clear expositions of the integral
equation approaches. A second disadvantage of the integral
equation approach is that it leads to linear systems with dense
matrices. For large sizes, these dense matrices are relatively
expensive to perform computations with. Many modern calcula-
tions require characterization of the scattering off complex shaped
objects, where large matrices arise. The fast multipole methods
(FMM) [23] allow computation of the product of a vector with a
dense matrix of the kind that arises upon discretization of the
integral equation to be done extremely rapidly, and go a long way
towards alleviating this disadvantage.

The most crucial issue and major problem in BIM implementa-
tions is the evaluation of singular and hypersingular integrals
involved in the integral equations. These integrals contribute
to the dominant (diagonal and near diagonal) terms of the
discretized boundary element matrices. The treatment of singular
and hypersingular integrals has been a subject of investigation for

the development of BIM in the past decades, and many techniques
have been proposed so far. We will make no attempt to review
these many contributions (see, e.g., [22] and the references
therein), as this goes beyond the scope of this paper. These
methods include analytical integration if possible [22,18], approx-
imation by equations with smooth kernels [7,25] and subtraction
of the singularity [2].

In this paper we consider a new approach where we can
compute the singular and hypersingular parts of the integrals
involved in BIM by a simple use of Green’s theorem and particular
solutions of the Helmholtz equations. We show computational
results for 2D domains, but the method can be easily extended to
the three-dimensional (3D) case. The numerical results will be
compared to the very efficient method in [18,5, Chapter 3.5],
where analytical computation of the diagonal elements with a
Nyström discretization were performed. We will demonstrate that
our method has exponential convergence, and is much easier to
implement, especially for the hypersingular kernel, compared to
the previously mentioned methods.

The paper is organized as follows. In Section 2 we recall the
boundary integrals and discuss briefly the derivation of boundary
integral equations. In Section 3 we implement the numerical
algorithm and discuss few examples. Finally, in Section 4, we
summarize the results.

2. Boundary integral formulation

First, let us introduce the boundary integral operators. We
denote the fundamental solution of Eq. (1.1) (the free-space
source) by

Fðx; yÞ ¼ �
i

2
Hð1Þ0 ðkjx� yjÞ,

where Hð1Þ0 is the Hankel function of order zero and the first
kind.

For f;c 2 CðGÞ, define the single and double layer potentials

SfðxÞ ¼
Z
G
Fðx; yÞfðyÞdsðyÞ; x 2 R2

nG (2.1)

and

DcðxÞ ¼
Z
G

@

@nðyÞFðx; yÞcðyÞdsðyÞ; x 2 R2
nG (2.2)

with densities f and c, respectively. Their normal derivatives are
given by

MfðxÞ ¼
@

@nðxÞ
SfðxÞ and NcðxÞ ¼

@

@nðxÞ
DcðxÞ. (2.3)

It is known (cf. [4, Sections 2.4 and 2.5]) that the above defined
potentials are analytic in R2

nG and when x approaches G, S and N

are continuous, whereas D and M exhibit jumps. In particular,
on G,

S! Ŝ; N! N̂; D!�I þ D̂ and M!�I þ M̂, (2.4)

where the upper (resp. lower) sign corresponds to the limit when
x approaches G from outside (resp. inside) and I is the identity
operator. The compact operators Ŝ; M̂; D̂ : CðGÞ ! CðGÞ are given,
on G, by

ŜfðxÞ ¼
Z
G
Fðx; yÞfðyÞdsðyÞ; x 2 G,

M̂fðxÞ ¼
Z
G

@

@nðxÞFðx; yÞfðyÞdsðyÞ; x 2 G,

D̂cðxÞ ¼
Z
G

@

@nðyÞ
Fðx; yÞcðyÞdsðyÞ; x 2 G
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