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a b s t r a c t

In this paper, a multi-domain technique for 3D elasticity problems is derived from the hybrid boundary

node method (Hybrid BNM). The Hybrid BNM is based on the modified variational principle and the

Moving Least Squares (MLS) approximation. It does not require a boundary element mesh, neither for

the purpose of interpolation of the solution variables nor for the integration of energy. This method can

reduce the human-labor costs of meshing, especially for complex construction. This paper presents a

further development of the Hybrid BNM for multi-domain analysis in 3D elasticity. Using the

equilibrium and continuity conditions on the interfaces, the final algebraic equation is obtained by

assembling the algebraic equation for each single sub-domain. The proposed multi-domain technique

is capable to deal with interface and multi-medium problems and results in a block sparsity of the

coefficient matrix. Numerical examples demonstrate the accuracy of the proposed multi-domain

technique.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-domain (multi-zone) formulations play an important
part in numerical analysis when dealing with problems involving
interface or dissimilar materials, such as composite materials, etc.
Besides, in the case of problems with complicated boundary or a
large number of degrees of freedom (DOFs), the use of multi-
domain techniques results in a block sparsity matrix and a better
computational efficiency may be obtained. The multi-domain
techniques for potential and elasticity problems have been widely
investigated in boundary element method (BEM) and some other
numerical methods. The basic idea of the multi-domain techni-
ques in BEM is that the whole domain is broken up into separate
sub-domains, and a boundary integral equation is obtained for
each sub-domain. By assembling all contributions of boundary
integral equations for each sub-domain, the final system equation
can be formed. Ramsak and Skerget [1] present an efficient 3D
multi-domain boundary element method for solving problems
governed by the Laplace equation. A symmetric Galerkin multi-
zone boundary element formulation for elasticity problems is
proposed by Layton et al. [2]. Gray and Paulino [3] present a
symmetric Galerkin boundary integral method for interface and
multi-zone problems. Gao and Davies [4] propose a new techni-
que for 3D elasticity BEM with corners and edges. Gao and
Yang [5] derive a boundary integral equation for multi-medium
elasticity problems from the boundary-domain integral equation

for single medium elasticity problems. A multi-domain boundary
contour method (BCM) for interface and dissimilar material
problems in elasticity problems is proposed by Phan and Mukher-
jee [6]. The multi-domain techniques in all of the above-men-
tioned works are based on the continuity and equilibrium
conditions across the interface, namely the continuity of potential
(Laplace) or displacement (elasticity) and the equilibrium of flux
(Laplace) or traction (elasticity).

In the conventional BEM, the task of mesh generation for
complex geometries is often time-consuming and prone to errors
even though it only needs discretization of the boundary, and it
has difficulties with remeshing in problems involving moving
boundaries, large deformations or crack propagation. In the last
decades, a new class of numerical methods, namely, the meshless
or meshfree methods were developed. One of the main purposes
of the meshless techniques is to reduce the human-labor costs
required for meshing the domains of complex-shape. There are
many meshless techniques have been proposed so far, including
the element free Galerkin method (EFG) [7], the meshless local
Petrov–Galerkin (MLPG) approach [8], the boundary node method
(BNM) [9] and the hybrid boundary node method (Hybrid BNM),
etc. The Hybrid BNM is proposed by Zhang et al. [10–14] for
potential and elasticity problems and has been developed by Miao
et al. [15,16], which combines the MLS approximation [17]
scheme with the hybrid displacement variational formula. It not
only reduce the spatial dimensions by one like BEM or BNM, but
also does not require a boundary element mesh, neither for the
purpose of interpolation of the solution variables nor for the
integration of energy. In fact, the Hybrid BNM requires only
discrete node located on the surface of the domain and its
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parametric representation. As the parametric representation of
created geometry is used on most of CAD packages, it should be
possible to exploit their Open Architecture feature, and the
required coefficients (representation) can be obtained automati-
cally. Thus, it can reduce the human-labor cost for meshing the
domain and can be applied to moving boundaries problems and
crack propagation problems efficiently.

A multi-domain formulation of Hybrid BNM for 3D potential
problems has been proposed by Zhang et al. [18]. In their work, it
was combined with the fast multipole method (FMM) [19], high
accuracy and efficiency are observed. However, in Ref. [18], the
method proposed by Zhang is for 3D potential problems only. This
paper presents a further development of the Hybrid BNM for
treating multi-domain problems in 3D elasticity. It is a basic for
our future research about the composite material problems, crack
problems, etc. And it is a first step for the large scale simulation of
composite material with fast algorithm, such as fast multipole
method (FMM). In addition, this paper gives the details of equa-
tions for arbitrary number of sub-domains.

Based on the continuity of displacement and the equilibrium
of traction conditions of nodes on the interfaces, the details of
formulas are derived and the final algebraic equation for the
multi-domain technique is obtained by assembling the algebraic
equation for every single sub-domain. Several numerical exam-
ples are present to demonstrate the accuracy of the proposed
multi-domain technique.

This paper is organized as follows: In Section 2, the hybrid
boundary node method for 3D elasticity problems is reviewed.
Section 3 presents an extension of the Hybrid BNM to deal with
multi-domain problems in 3D elasticity. Finally, numerical examples
are presented in Section 4 to validate the multi-domain technique in
this work.

2. The hybrid boundary node method

In this section, the Hybrid BNM for 3D elasticity problems (for
detailed discussion see Ref. [10,14]) is reviewed. The Hybrid BNM
is based on a modified variational principle [20]. In 3D elasticity
problems, the functions in the modified variational principle that
assumed to be independent are: displacements ~ui and tractions ~t i

on the boundary and displacements ui inside the domain. Con-
sider a domain O enclosed by G¼GuþGt with ui and ti are the
prescribed displacements and tractions, respectively. The corre-
sponding variational functional PHB is defined as follows:

PHB ¼

Z
O

1

2
ui,jCijkluk,l dO�

Z
G
~t iðui� ~uiÞdG�

Z
Gt

ti ~ui dG ð1Þ

where the boundary displacements ~ui satisfies the essential
boundary condition, i.e. ~ui ¼ ui on Gu.

The integral equations can be obtained by dPHB ¼ 0 over the
domain and its boundary as follows:Z
G
ðti�~t iÞdui dG�

Z
O
sij,jdui dO¼ 0 ð2Þ

Z
G
ðui� ~uiÞd~t idG¼ 0 ð3Þ

Z
G
ð~t i�tiÞd ~ui dG¼ 0 ð4Þ

Eq. (4) will be satisfied if we impose the traction boundary
condition, ~t i ¼ ti in the same way as the essential boundary
condition after the matrices have been computed. So it can be
ignored in the following discussion.

The modified variational principle holds both in the whole
domain O and any sub-domain OI with its boundary GI and LI.

Define the sub-domain OI as an intersection of the domain and
a small sphere centered at node sI , with GI ¼ @OI \ G and
LI ¼ @OI�GI , respectively. We can obtain the following weak
forms for the sub-domains and its boundaries to replace
Eqs. (2) and (3):Z
GI þ LI

ðti�~t iÞhI dG�
Z
OI

sij,jhI dO¼ 0 ð5Þ

Z
GI þ LI

ðui� ~uiÞhI dG¼ 0 ð6Þ

where hI is a weight function.
The displacements ~u and tractions ~t at the boundary G are

approximated by the MLS approximation as follows:

~uðsÞ ¼
Xn

J ¼ 1

FJðsÞûJ ð7Þ

~tðsÞ ¼
Xn

J ¼ 1

FJðsÞt̂J ð8Þ

where n is the number of nodes for MLS approximation which
located on the surface; ûJ and t̂J are nodal values, and FJðsÞ is the
shape function of the MLS approximation, corresponding to node
sJ (full details refer to [10,14]).

In Eqs. (5) and (6), ~u i and ~t i on GI can be expressed by
Eqs. (7) and (8) since GI is a portion of G, but ~ui and ~t i on LI have
not been defined yet. In order to solve this problem, we deliber-
ately select hI such that all integrals over LI vanished. This can be
easily accomplished by using the weight function in the MLS
approximation for hI , with replacing the radius of the support of
the weight function by the radius rI of the sub-domain OI (full
details refer to [10,14]).

With hI vanishing at LI , the integrals over LI in Eqs. (5) and (6)
are zero and the two Eqs. can be rewritten asZ
GI

ðti�~t iÞhI dG�
Z
OI

sij,jhI dO¼ 0 ð9Þ

Z
GI

ðui� ~uiÞhI dG¼ 0 ð10Þ

The u and t inside the domain can be approximated by
fundamental solutions as

u¼

u1

u2

u3
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where uJ
ij and tJ

ij are the fundamental solutions; xJ
i are unknown

parameters; N is the total number of boundary nodes for approx-
imation of u and t inside the domain.

From the fundamental solution, one can see that it leads to
singularities in the integrals of Eqs. (9) and (10) and there exists
domain integrals in Eq. (9) if the field point Q and source point sJ

are coincide. The singularities in Eq. (10) are weak and can be
evaluated directly. However, the integrals in Eq. (9) are strong
singularities. In order to avoid direct numerical integration of the
strong singularities and domain integrals, the rigid body move-
ment is utilized (full details see Ref. [14]). So, in the following
equations, the domain integrals are ignored.
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