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a b s t r a c t

In this paper, numerical frequency domain formulations are developed to simulate the 2D acoustic

wave propagation in the vicinity of an underwater configuration which combines two sub-regions: the

first one consists of a wedge with rigid seabed and free surface, and the second one is assumed to have a

rigid flat bottom and a free flat surface.

The problem is solved using two different numerical methods: the Boundary Element Method

(BEM) and the Method of Fundamental Solutions (MFS). Two models are developed by using a sub-

region technique, where only the vertical interface between sub-regions of different geometries has to

be discretized. These formulations incorporate Green’s functions that take into account the presence of

flat rigid and free surfaces and of a wedge. Green’s functions are defined using two approaches: the

image source method is used to model the rigid flat bottom and free flat interface, whereas the

response provided by the wedge sub-region is based on a normal mode solution. Additionally, a MFS

and a BEM model are also implemented which require the discretization of the sloping rigid seabed of

the wedge, therefore making use of Green’s functions for a rigid flat bottom and a free surface (using

the image source method).

A detailed discussion on the performance of these formulations is performed, with the aim of

finding an efficient formulation to solve the problem. It is found that the model based on the MFS and

on the sub-region technique has a significantly lower computational cost and is stable, therefore being

the most suitable for the analysis of acoustic wave propagation in the studied configurations.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Computational methods for determining the sound field in an
acoustic medium have evolved over the past decades. In the specific
field of underwater acoustics, many methods have been applied with
great success, as documented in the excellent reference work [1], all
of them with specific limitations. Some of the most well-known and
broadly applied methods are based on acoustic ray theory, normal
mode analysis (pioneered by the works of Pekeris [2]), simplified
parabolic equations (initially introduced in this field by Hardin and
Tappert [3]) or Green’s functions for layered media (as defined, for
example, in the works of Schmidt and Tango [4] or Tadeu et al. [5,6]).

The more exact wave theory, together with modern high-
speed computing infrastructures and the advances in numerical
physics, allowed the development of different and more accurate
approaches for some specific problems in underwater acoustics,

including models based on the well-established finite difference,
finite element and boundary element numerical methods.

An important early work on acoustic scattering in the open ocean
using the Boundary Element Method, by Dawson and Fawcett [7],
takes the waveguide surfaces to be flat, except for a compact area of
deformation where the acoustic scattering takes place. An application
of the Boundary Element Method (BEM) using a hybrid model which
combines the standard method in an inner region with varying
bathymetry and an eigenfunction expansion in the outer region of
constant depth was subsequently presented by Grilli et al. [8].

Santiago and Wrobel [9,10] implemented the sub-region
technique in boundary element formulation for the analysis of
two-dimensional acoustic wave propagation in a shallow water
region with irregular seabed topography. In their approach the
bottom and surface boundaries of the regions are modeled using
Neumann and Dirichlet conditions, allowing for the use of Green’s
functions that satisfy either the free surface boundary condition
or both the boundary conditions on the free surface and rigid
bottom.

In a number of acoustic environments, the geometry of the
propagation domain can be assumed to be constant in one
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direction. When the acoustic excitation is modeled as a 3D source,
these problems are usually called 2.5D, thus the 3D acoustic wave
equation can be mathematically manipulated to obtain the
frequency-domain solution as a summation of simpler 2D pro-
blems [11]. Boundary element models have also been developed
using this technique to compute the pressure field in ocean
environments [12,13].

One of the difficulties of boundary element methods in the
analysis of acoustic environments occurs when more complex
geometries are analyzed, for which case it may be necessary to
perform large discretization schemes, leading to high computa-
tional effort. One way of avoiding these large discretizations is
incorporating appropriate Green’s functions to account for part of
the boundaries, such as a free surface. However, in many cases,
these functions are built as convergent series, and to take advantage
of their use in numerical codes, it may be necessary to previously
evaluate their convergence requirements.

More recently, researchers have also focused their attention to
a different class of numerical methods, usually designated as
meshless methods, which do not require explicit domain or bound-
ary discretization. One such technique is the Method of Fundamen-
tal Solutions (MFS) [14–16]. Mathematically, the MFS is rather
simple, but it also requires previous knowledge of Green’s functions
of the propagation domains. In fact, very little can be found in the
literature concerning the application of such methods to underwater
acoustics, although its development for applications in the analysis
of sound propagation in underwater environments may be an
interesting approach. For such methods, the use of Green’s functions
that automatically satisfy the specific boundary conditions may
further decrease computational cost.

In the present paper the authors aim to analyze the efficiency
and accuracy of different numerical formulations developed to
allow for the computation of the acoustic wave propagation in a
specific underwater acoustics configuration. These formulations
may incorporate Green’s functions that allow reducing the dis-
cretization needs. Two different numerical methods are used
here: the first one is the Boundary Element Method (BEM) and
the second is the Method of Fundamental Solutions (MFS). In all
the cases, the analyzed region is assumed to be two-dimensional,
simulating underwater acoustic problems which have little varia-
tion in the long shore direction, and is divided in two sub-regions:
the first one is a flat waveguide, composed of a flat rigid bottom
and a flat free surface; the second is defined by a wedge, with
rigid bottom and free surface.

Four formulations are discussed. Two models are based on
BEM and MFS, respectively, requiring the definition of two sub-
domains where appropriate Green’s functions can be determined,
and thus only requiring the interface between sub-regions to be
discretized. In the first sub-domain, which assumes a flat rigid
bottom and a flat free surface, Green’s functions obtained using
the Image Source Method are used. In the second one, defining a
wedge, Green’s functions are obtained using an approach based
on the sum of normal modes [17]. The other two models also
make use of the MFS and BEM, but require discretization of the
inclined rigid bottom that forms the wedge. These models assume
only one region and make use of adequate Green’s functions
based on the Image Source Method.

The organization of this paper is as follows: first, the governing
equation of the problem is presented; there follows the descrip-
tion of the developed Boundary Element Method formulation and
of the Method of Fundamental Solutions; Green’s functions used
are then defined, followed by a convergence analysis performed
for the case of the wedge; after this, the proposed models are
verified by comparing the results they provide against each other;
the performance and accuracy of the models are discussed in
detail, in order to evaluate their advantages and limitations;

finally, an example application is presented, illustrating the appli-
cability of the proposed formulation.

2. Governing equation of the problem

Consider the problem of acoustic wave propagation in a region
O of infinite extent along the z direction, with irregular rigid
seabed topography and flat free surface, as shown in Fig. 1.

If the source of acoustic disturbance is time-harmonic, the
sound velocity is constant and the medium in the absence of
perturbations is quiescent, the governing Helmholtz equation for
this problem can be written as

r2fþk2f¼�
Xnf

l ¼ 1

Qldðn
f
l ,nÞ, in region O ð1Þ

where nf is the number of sources in domain; f is the velocity

potential; Ql is the magnitude of the existing sources nf
l located at

ðxnf

l

,ynf

l

Þ; n is a domain point located at (xx,yx); dðn
f
l ,nÞ is the Dirac

delta generalized function; and k¼o/c is the wave number, with
o being the angular frequency and c the speed of sound in the
medium.

The described problem is subjected to the following boundary
conditions:

� Dirichlet condition

fðxÞ ¼ 0 in GF ð2Þ

� Neumann condition

@f
@n
ðxÞ ¼ 0 in GB ð3Þ

� Sommerfeld radiation condition at infinity

lim
x-1

@f
@n
ðxÞ�ikfðxÞ ¼ 0 ð4Þ

where x is the field point located at (x, y), GF is the boundary of
the free surface, GB is the boundary of the bottom, n is the unit
outward normal vector and i¼

ffiffiffiffiffiffiffi
�1
p

.

3. Numerical formulations

The previously described wave propagation problem is solved
using four numerical formulations, based on the Boundary Ele-
ment Method and on the Method of Fundamental Solutions. In the
following sub-sections these formulations are described.

3.1. Boundary Element Method

According to Green’s second identity, Eq. (1) can be trans-
formed into the following boundary integral equation:

CðnÞfðnÞ ¼
Z
G

Gðn,xÞ
@f
@n
ðxÞdG�

Z
G

@Gðn,xÞ

@n
fðxÞdGþ
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Fig. 1. Geometry of the problem.
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