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a b s t r a c t

The singular solutions for linear elastostatics at corners are essential in both theory and computation. In

this paper we seek the singular solutions for corners with the clamped and the free stress boundary

conditions, and explore corner singularity in detail. In this paper the singular solutions of linear

elastostatics are derived, and two new models of interior crack singularity are proposed. The collocation

Trefftz methods are used to obtain highly accurate solutions, where the leading coefficient has 14 (or

12) significant digits by the computation with double precision. Such solutions are useful to examine

other numerical methods for singularity problems in linear elastostatics. Also the explicit singular

solutions can be adapted to design and develop efficient numerical methods for singularity problems,

such as the combined method (Li, 1998, 2008 [19,20]) and the Trefftz methods which include the

boundary approximation method (Li, 1990, Li et al., 1987 [18,26]), the collocation Trefftz method

(Li et al., 2008 [24]), the hybrid Trefftz method (Qin, 2000 [36]), the boundary collocation techniques

(Kolodziej and Zielinski, 2009 [16]), etc. This paper also explores a systematic analysis for singularity

properties and explicit singular solutions for corners of linear elastostatics.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The traditional finite element method (FEM) and finite
difference method (FDM) provide poor accuracy of numerical
solutions for singularity problems. Many innovative methods
have been developed, to seek the numerical solutions with
optimal convergence rates and good stability. For Poisson’s
equation and other elliptic equations, a systematic study is
provided in Li [19]. The singular properties and the singular
solutions near the corners are crucial to design effective
numerical methods. Moreover, highly accurate solutions are
important to examine different numerical methods. For Laplace’s
equation, Motz’s problem is a benchmark of singularity problems,
and its highly accurate solutions are provided in [19,23,26,30] by
the collocation Trefftz method (CTM).

For biharmonic equation, similar models to Motz’s problem are
first developed in [23], and stability analysis is explored in [25].
The singular solutions near corners under free stress boundary
conditions were first given in Williams [38], and then in Lin and
Tong [28], Jirousek and Venkstesh [14], Jirousek and Wroblewski
[15], Piltner [32], Drombosky et al. [8], and Qin [36]. In this paper,

our efforts are paid to linear elastostatics, and to derive new
particular solutions of linear elastostatics near corners under the
clamped, and the free stress boundary conditions, in addition two
new crack models are proposed. It is worthy pointing out that the
singular solutions near corners in this paper directly from free
stress boundary conditions are coincident with those in [38,28]
from biharmonic equations by using a similarity mapping.

The singular properties and the explicit singular solutions of
linear elastostatics at corners are essential in both theory and
computation. Once the singularity of corner solutions is known,
the reduced convergence rates of FEM, FDM, FVM and other
numerical methods are found (see Section 7.2), and some
improved techniques can be invented, to recover the optimal
convergence rates (see [19]). Moreover, once the explicit singular
solutions are known, some models as in Sections 4 and 6 can be
designed, and the collocation Trefftz method can be used to give
their highly accurate solutions, which can be used for testing
other numerical methods (also see [19]). More importantly, based
on the explicit particular solutions of corners given in this paper,
we may develop a number of efficient numerical methods for
linear elastostatics, such as the Trefftz methods including the
collocation Trefftz method and the hybrid Trefftz method, and the
combinations (see [1,4,7–9,12,17,20,27,29,34,35,39].)

This paper is organized as follows. In Section 2, a basic
description for elastostatics problems in 2D is introduced, and
their particular solutions are provided. In Section 3, singular
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solutions near corners are derived for the clamped boundary
conditions. In Section 4, a model of crack singularity with clamped
boundary conditions is designed, and its numerical solutions are
sought by the collocation Trefftz method (CTM) as in [19,24]. In
Section 5, singular solutions near corners are derived for the free
stress boundary conditions, and in Section 6 the other model of
crack singularity with free stress is designed, and numerical
results are also provided. In Section 7, the algorithms are given for
the leading powers nk of the corner solution Oðrnk Þ, and numerical
results are provided for the rectangular corner and the concave
corner of the L-shaped domain. In the last section, a few
concluding remarks are made.

2. Linear elastostatics problems in 2D

2.1. Basic equations

Consider the linear elastostatics problem in 2D. Denote the
displacement vector,

~w ¼w¼ fw1ðxÞ;w2ðxÞg
T ¼ fuðx; yÞ; vðx; yÞgT ; ð2:1Þ

where ~x ¼ x¼ ðx1; x2Þ ¼ ðx; yÞ. The linear strain tensor is given by

eijðxÞ ¼
1

2

@wiðxÞ

@xj
þ
@wjðxÞ

@xi

� �
; 1r i; jr2: ð2:2Þ

Let sij ð1r i; jr2Þ denote the stress tensor at x. For an isotropic
homogeneous Hookean solid, there exist the stress–strain rela-
tions

sij ¼ lðr � ~wÞdijþ2meij; 1r i; jr2; ð2:3Þ

where ‘‘ r � ’’ is the divergence operator, l and m are the Lamé
constants, and dij is the Kronecker delta.

When there exists a body force ~f , we obtain the nonhomoge-
neous equation, called the Lamé system for isotropic body:

mD~wþðlþmÞrðr � ~wÞþ~f ¼ 0 in S: ð2:4Þ

When ~f �~0, we have the Cauchy–Navier equation of linear
elastostatics:

D~wþ
1

1�2n
rðr � ~wÞ ¼ 0 in S; ð2:5Þ

where the Poisson ratio

n¼ l
2ðlþmÞ ; 0ono 1

2
: ð2:6Þ

Young’s modulus E and the bulk modulus K are introduced by

E¼
mð3lþ2mÞ

lþm ; K ¼
E

3ð1�2nÞ : ð2:7Þ

The inverse relations of (2.6) and (2.7) are given by

l¼
En

ð1þnÞð1�2nÞ
; m¼ E

2ð1þnÞ
: ð2:8Þ

The strain–stress relations are given by

eij ¼
1þn

E
sij�

n
E
dij

X2

k ¼ 1

skk: ð2:9Þ

There also exist the symmetric relations:

sij ¼ sji; eij ¼ eji: ð2:10Þ

Denote the constant

k¼ 1

4ð1�nÞ
: ð2:11Þ

For the plane strain problem the constant is given by

D¼
lþm
lþ3m

¼
1

3�4n
¼

k
1�k

; ð2:12Þ

and for the plane stress problem,

D¼
1

3�4n ¼
1þ n̂
3�n̂ ; n¼ n̂

1þ n̂ : ð2:13Þ

.

2.2. Traction boundary conditions

The Cauchy–Navier equation (2.5) is written explicitly by

mDuþðlþmÞ @
2u

@x2
þ
@2v

@x@y

� �
¼ 0 in S; ð2:14Þ

mDvþðlþmÞ @2u

@x@y
þ
@2v

@y2

� �
¼ 0 in S; ð2:15Þ

or by

Duþ
1

1�2n
@2u

@x2
þ
@2v

@x@y

� �
¼ 0 in S; ð2:16Þ

Dvþ
1

1�2n
@2u

@x@y
þ
@2v

@y2

� �
¼ 0 in S; ð2:17Þ

where n is given in (2.6). The traction on @S is given by

~tð~wÞðxÞ ¼ ðt1ðu; vÞ; t2ðu; vÞÞ
T ; ð2:18Þ

where the components

t1ðu; vÞ ¼ sxn1þsxyn2 ¼ l
@u

@x
þ
@v

@y

� �
n1þ2m @u

@n þmn2
@v

@x
�
@u

@y

� �
;

ð2:19Þ

t2ðu; vÞ ¼ sxyn1þsyn2 ¼ l
@u

@x
þ
@v

@y

� �
n2þ2m @v

@n
�mn1

@v

@x
�
@u

@y

� �
;

ð2:20Þ

where n1 ¼ cosðn; xÞ, n2 ¼ cosðn; yÞ, and the stress

sx ¼ s11; sy ¼ s22; sxy ¼ s12 ¼ s21: ð2:21Þ

2.3. Particular solutions

In Jirousek and Wroblewski [15], Jirousek and Venkstesh [14]
and Qin [36], for the plane stress equations (2.16) and (2.17), the
particular solutions are expressed as the complex functions.
Denote i¼

ffiffiffiffiffiffiffi
�1
p

; z¼ xþ iy¼ reiy; z ¼ x�iy¼ re�iy. The particular
solutions uðx; yÞ and vðx; yÞ of the plane stress equations are given
by the real and imaginary parts of Ak;Bk;Ck and Dk below,
respectively,

Ak ¼ izkþ iDkzzk�1; ð2:22Þ

Bk ¼ zk�Dkzzk�1; ð2:23Þ

Ck ¼ izk; ð2:24Þ

Dk ¼�zk; k¼ 1;2 . . . ; ð2:25Þ

where D is given in (2.12) or (2.13). We have the following linear
combination for the Trefftz method (TM):

uL ¼
XL

k ¼ 1

fakRðAkÞþbkRðBkÞþckRðCkÞþdkRðDkÞgþd0; ð2:26Þ

vL ¼
XL

k ¼ 1

fakIðAkÞþbkIðBkÞþckIðCkÞþdkIðDkÞgþc0; ð2:27Þ
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