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a b s t r a c t

This paper describes a mesh refinement scheme for boundary element method in which the number of

elements, the size of elements, element end locations and the element polynomial order are determined

to meet the user specified accuracy. The use of grading function in conjunction with the L1 norm makes

the mesh refinement scheme applicable to a variety of boundary element formulation and applications.

The algorithm is stable for smooth, discontinuous, as well as singular density functions. Numerical

results for mathematical test functions as well as for elastostatic problems demonstrate the viability

and versatility of the algorithm for BEM applications.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Computational tools like finite element method (FEM) and
boundary element method (BEM) have become integral part of
engineering design. Efforts to improve the accuracy of the analysis
by refining the mesh have been going on since late seventies [1].
The mesh refinement schemes in BEM, like in FEM, can be
classified [2] into the h, p, and r refinement and their combination.
In the h-method, the accuracy is improved by increasing the total
number of elements, but the order of the polynomial remains
invariant. The high computational cost associated with the h-
method due to the large number of unknowns can be reduced to
some extent by the h-hierarchical refinement scheme [3]. In the p-
method the polynomial order is increased uniformly or selectively
to improve the accuracy while keeping the node location and
element length unchanged during the iterative process [4]. The
convergence rate of p-method is always better than the h-method
for smooth functions [5] but may not converge near a singularity
[6]. In the r-method [7], the total number of elements and the
order of the polynomial are kept invariant, but the spacing of the
elements is adjusted to minimize the error. If the initial mesh
does not have sufficient degrees of freedom (DOF) then the
desired accuracy cannot be obtained with the r-method [8].

The hp-method is a combination of the h and p-method that
overcomes the convergence difficulty of the p-method near the
singularity. Initial papers published on p and hp mesh refinement
method were mostly by Babuska and his colleagues [9]. Most of
Babuska work was done in relation to FEM and later extended to
BEM [10]. In FEM he showed that mesh generated using grading
function performs better than a graded mesh [9]. In FEM he has

shown that optimal meshes are graded towards the singular point
and starting with the second element away from singularity the
polynomial order increases linearly. He has shown that for the
Galerkin BEM, hp-method, with geometric mesh graded towards
the point of singularity, has exponential rate of convergence [11].
In some cases the location [5] and the strength of the singularity
[10] has to be specified. The p-method and the hp-method are
usually restricted to the Galerkin method of satisfying the
boundary conditions in BEM due to the difficulty of determining
the collocation points with the increase in polynomial order.

Sun and Zamani [8] developed a hr-method for direct BEM.
Finding residuals is computationally expensive in case of indirect
BEM and thus the use of residuals as an error indicator makes the
method suitable primarily for the direct BEM. Ammons and Vable
[12] developed a hr-method which can be used for both direct and
indirect BEM by using grading function [7] and L1 norm. The hr-
method of Ammons and Vable has very slow convergence rate
near discontinuities and singularities in density function and can
have very large DOF if a lower order polynomial is specified by the
user.

This paper presents an hpr-method that has fast convergence
for non-singular density functions and is stable for discontinuous
and singular density functions. The use of grading function with L1

norm as an error measure makes it possible to use the refinement
scheme for approximation of any mathematical function of one
variable and thus is independent of BEM methodology and its
application. The three functions used for identification of critical
ideas and for testing the algorithm are:

Function 1 : u¼ sinðpsÞ 0rsr1 ð1aÞ

Function 2 : u¼
ffiffi
s
p

0rsr1 ð1bÞ

Function 3 : u¼ 1=
ffiffi
s
p

0rsr1 ð1cÞ
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The mathematical functions have counterparts in the problems
considered for demonstrating the application of the algorithm in
BEM. The three BEM problems considered are:

(i) A circular hole in an infinite plane under uniaxial tension
modelled using direct BEM. This has a smooth density
function analogous to function 1 in Eq. (1a).

(ii) A pressured crack in an infinite plane. Displacement
discontinuity is used for modelling the crack. It has a singular
slope at the crack tip analogous to function 2 in Eq. (1b).

(iii) A square under uniaxial tension is modelled by indirect BEM.
The density function is a discontinuous and can be singular at
each corner analogous to function 3 in Eq. (1c).

The various formulations of BEM, the errors that arise from the
discretization, and the algorithms that reduce these errors are
discussed elsewhere by Vable [13] and are not repeated here. A
program called BEAMUP1 has been built at Michigan Technolo-
gical University that incorporates the various algorithms that
reduce the errors of discretization. BEAMUP will be used for BEM
analysis to get density functions used in this paper.

2. hr-mesh refinement

The hr-mesh refinement scheme of Ammons and Vable [12]
that uses the grading function and L1 norm will be modified for
the proposed hpr-mesh refinement scheme in this paper. This
section briefly describes the basic equations and ideas needed for
this paper.

A grading function G(s) is a monotonic function varying from
zero to one that maps the density function u(s) such that

GðsiÞ ¼
i

N
0r irN ð2Þ

where si represent the arc coordinate of the ith element end node
and N represents the number of elements. The objective of the
hr-mesh refinement scheme is to determine si and N such that the
user specified average error per unit length euser is achieved.

In this paper the error of a mesh is measured using the L1 norm
given in Eq. (3).

eR ¼
XN

i ¼ 1

Z si

si�1

juðsÞ�pðsÞjds ð3Þ

where u(s) is the density function and p(s) is the polynomial
approximation of the density function on the ith element. It can
be shown [12] that the grading function as determined in Eq. (4)
will minimize the L1 error.

GðsÞ ¼
G�ðsÞ

G�ðsNÞ
where G�ðsÞ ¼

Zs

s0

juðkþ1ÞðsÞÞj
1

kþ 2ds ð4Þ

where u(k + 1)(s) is the k+1 derivative of u(s), k is the order of
polynomial used in approximating the density function, and sN is
the value of s at the last node on the boundary.

From Eq. (2) we note that G(sj)�G(sj�1)=1/N, thus in an
optimal mesh Eq. (4) implies the change in G*(s) is equal in all
elements. Hence, for the jth element

DG�j ¼ G�ðsjÞ�G�ðsj�1Þ ¼
G�ðsNÞ

N
ð5Þ

The error in each element (eRj
) can be found and summed

over all elements to obtain the error in the old mesh as eR

shown below.

eRj
¼DkðDG�j Þ

kþ2
ð6aÞ

eR ¼
XN

j ¼ 1

eRj
ð6bÞ

where Dk is a constant that depends only on the polynomial order
[12,14].

2.1. hr-mesh refinement algorithm

The description here is conceptual with details for implemen-
tation described in Ref. [12]. The number of elements Nnew needed
for the next iteration can be found [12] from the equations below

Nnew ¼
Dk

euser

� � 1
kþ 1

ðG�ðsNÞÞ
kþ 2
kþ 1 ð7Þ

A boundary is considered made up of sub-boundaries. Corners
or a change in type of boundary condition defines the ends of a
sub-boundary. In the hr-mesh refinement scheme, it is assumed
that all elements on a sub-boundary have the same polynomial
order and continuity except the end elements where a disconti-
nuity [15] is permitted in the density function. In other words, Dk

is constant on a sub-boundary. The steps of the hr-mesh
refinement algorithm are described below.

1. From BEM analysis (or from the mathematical functions in
Eq. (1a)–(1c)) the density function u(si) is found at collocation
points.

2. A cubic spline is constructed through the nodal values of the
density function.

3. The integral in Eq. (4) is evaluated numerically to obtain G*(si)
at the nodal points of the old mesh.

4. Knowing the value of G*(sN) the grading function G(si) is found
from Eq. (4) and number of elements for the new mesh is
found from Eq. (7).

5. A cubic spline is constructed for G(s) from the nodal values in
step 4.

6. The ends of the element si for the new mesh are found by
determining the roots of Eq. (2).

7. Steps 1 through 6 are repeated till mesh error eR in Eq. (7)
becomes less than or equal to the user error euser or the limit on
maximum iterations is met.

The hr-mesh refinement algorithm is applicable to both the
direct and the indirect BEM and is independent of BEM
application in two dimension (elastostatic, Poisson’s equation,
and plate bending). Eqs. (2)–(6a) are applicable to any order of
polynomials and the program BEAMUP can incorporate poly-
nomials up to order 15. However, the use of cubic spline to model
the boundary data limits the mesh refinement schemes to cubic
polynomials.

3. New error measure

Eqs. (5) and (6a) imply that the error in each element is equal
for an optimum mesh. Thus, non-uniform distribution of error is
an indicator of a non-optimum mesh. Convergence in the
hr-refinement scheme described in Section 2 is assumed to occur
when the total average error per unit length on the boundary eR is
less than or equal to the user specified error euser. Thus, it is
possible that on part of boundary the average error is less than the
user specified and on other parts it is more, producing a non-
uniform distribution of error. Results in Ref. [12] showed that near

1 Details of BEAMUP can be found on http://www.me.mtu.edu/�mavable/

BEAMUP/index.html.
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