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ABSTRACT

In this paper, a version of meshless local Petrov-Galerkin (MLPG) method is developed to obtain three-
dimensional (3D) static solutions for thick functionally graded (FG) plates. The Young's modulus is
considered to be graded through the thickness of plates by an exponential function while the Poisson’s
ratio is assumed to be constant. The local symmetric weak formulation is derived using the 3D
equilibrium equations of elasticity. Moreover, the field variables are approximated using the 3D moving
least squares (MLS) approximation. Brick-shaped domains are considered as the local sub-domains and
support domains. In this way, the integrations in the weak form and approximation of the solution
variables are done more easily and accurately. The proposed approach to construct the shape and the
test functions make it possible to introduce more nodes in the direction of material variation.
Consequently, more precise solutions can be obtained easily and efficiently. Several numerical
examples containing the stress and deformation analysis of thick FG plates with various boundary
conditions under different loading conditions are presented. The obtained results have been compared
with the available analytical and numerical solutions in the literature and an excellent consensus is

seen.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) are advanced compo-
sites in which the material properties vary smoothly and
continuously by a predetermined function. Generally, those are
composed of ceramics and metals so that the material properties
such as the Young’s modulus vary from the metallic side to the
ceramic one. Initially, they were designed as thermal barrier
coatings in space applications. However, recently FGMs have
gained lots of applications in nuclear reactors [1], dental and
medical implants [2], piezoelectric and thermo electric devices
[3-5] and fire retardant doors [6]. Investigation of the mechanical
behavior of new materials such as FGMs is an attractive research
area in mechanics. Many researchers have studied the mechanical
behavior of FGMs having various geometries and loading
conditions. Among the geometries, which are considered to
analyze, the plates are the most significant due to numerous
applications in engineering structures.

It should be mentioned that the plate is a three-dimensional
(3D) structure in which one dimension is relatively much smaller
than the other dimensions. In 2D theories such as the classical
plate theory (CPT), in the first order shear deformation plate
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theory (FSDT) and the higher order shear deformation plate
theory (HSDT), various assumptions are made to obtain a 2D
formulation for plates. Obviously, it is easier to find a solution for
the plate problems in 2D formulation. However, some errors
occur in solutions due to the assumptions considered in 2D
theories. With the increase in the thickness of plates, the errors
amplify. If no simplifying assumptions are considered, the 3D
elasticity equations must be used for elastic analysis of plates. The
3D solution does not involve any limitation of 2D solutions. It is
obvious that if 3D solutions are attainable, it will be more
accurate than the solutions obtained by the mentioned 2D
theories.

Analytical and numerical methods have been used for 3D
analyses of plates [7-13]. Analytical methods are applicable for
some simple cases and generally, the analytical solutions cannot
be found for plates with complicated geometries and boundary
conditions. Consequently, numerical methods such as the finite
element method (FEM) and differential quadrature (DQ) method
are the alternatives that have been employed for 3D analysis of
plates. Recently, meshless methods, which do not need burden-
some effort of mesh generation have gained lots of attention. A
variety of these methods have been developed, such as the
element-free Galerkin (EFG) method [14], the reproducing kernel
particle method (RKPM) [15], hp-clouds [16], and the partition of
unity method (PUM) [17], which have been successfully applied
for the solutions of some engineering problems. However, most of
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these methods are not truly meshless, because, they use
background cells for the evaluation of integrals in the weak
formulation of problems.

The meshless local Petrov-Galerkin (MLPG) method proposed
by Atluri et al. [18-21] considers local weak formulation instead
of the global weak formulation, and does not require a back-
ground mesh for evaluation of the integrals. In the MLPG method,
the integrals of the weak form are evaluated over local sub-
domains that partly cover each other. The trial and test functions
are chosen from totally different functional spaces. Furthermore,
the physical size of the test and trial domains is not necessary to
be the same, which makes the MLPG a very flexible method. Based
on the concept of the MLPG, six different methods have been
introduced, which are labeled as MLPG1-MLPG6 [21]. These six
methods differ due to the type of test function considered in the
weak formulation. Among them, the MLPG1 and MLPG5 seem to
be the most promising formulations; so they are used in the
present study. In the MLPG1 a namely fourth-order spline
function is considered as test function, while the Heaviside step
function is employed as test function in MLPG5. It is noticeable
that the MLPG5 does not involve any domain integration or
singular integrals. The MLPG methods have been employed in a
wide range of applications, for example elasto-statics [22], elasto-
dynamics [23], fluid mechanics [24], convection-diffusion pro-
blems [25], thermoelasticity [26], beam problems [27,28], plate
problems [29-31], FGM problems [32,33], fracture mechanics
[34-36], and strain gradient theory [37]. So far, the applications of
the MLPG method are mostly limited to 2D problems. The major
reason for the 3D analysis is considered less, related to difficulties
in evaluating the integrals over the local sub-domains, especially
when a sub-domain intersects the global boundary of problem.

However, significant efforts have been carried out to develop the
MLPG method to solve 3D problems. Li et al. [38] applied a
combination of MLPG2 and MLPGS5 for the solution of two classical
3D problems, viz., the Boussinesq problem and the Eshelby’s inclusion
problem. They used MLPG5 for nodes inside the domain and MLPG2
for nodes on the boundary of the problem domain. Han and Atluri
[39] used the MLPG method to solve 3D elastic fracture problems.
Also, Han and Atluri [40] developed three kinds of the MLPG methods
using different test functions for analysis of thick beams and spheres
and examined the performance of the methods. They used Delaunay
triangulation algorithm and introduced a suitable mapping procedure
for evaluating the integrals over the spherical sub-domains. The
integrals on the volume of the sub-domains were calculated by
dividing the domains into cone shapes. The MLPG domain discretiza-
tion method has been employed to 3D elasto-dynamic problems of
impact and fragmentation by Han and Atluri [41]. Vaghefi et al. [42]
developed two different 3D MLPG procedures including MLPG1 and
MLPGS5 for the elasto-static analysis of thick rectangular plates with
various boundary conditions. Brick-shaped domains are considered as
sub-domains and support domains.

The purpose of the present paper is to develop a complete 3D
MLPG procedure for the elasto-static analysis of thick FG plates
with various boundary conditions. The Young’s modulus of the
plate is assumed to vary exponentially through the thickness, and
the Poisson’s ratio is assumed to be constant. The local symmetric
weak form (LSWF) is used to formulate the problem and 3D MLS
approximation is used to approximate the field variables. To
impose the essential boundary conditions, the penalty method is
adopted. Since the global domain of the problem is cubic, brick-
shaped domains are considered as sub-domains and support
domains for evaluating the integrals of the weak form and
approximating the solution variables, respectively. Moreover, the
approach used for the construction of the shape and the test
functions makes it possible to add nodes in any direction of the
plate (through length, width and thickness) depending upon the

required accuracy. Therefore, sufficient number of nodes has been
added in the thickness direction of the plate to represent the
normal and shear stress variations through the thickness with
good accuracy. Consequently, more precise solutions can be
obtained easily and efficiently. In order to illustrate the accuracy
of the proposed approach, several numerical examples are
presented and the results are compared with the known solutions
in the literature.

2. MLPG formulation for 3D elasticity

The 3D elasto-static equilibrium equations in a domain of the
volume Q, which is bounded by the surface I', are given by

O'UJ-Fb]:O, in Q (1)

where ¢j; is the stress tensor and b; is the body force vector. The
indices i, j which take the values of 1, 2, 3 refer to the Cartesian
coordinates x, y, z, respectively. The boundary conditions are
assumed to be

uj=u;onl, (2a)

O'ijnj = fi on F[ (Zb)

where u; and t; represent the displacement components and the
surface traction components, respectively. I', is the boundary
with the prescribed displacement u; while I, is the boundary with
the prescribed traction f;. n; denotes the unit outward vector
normal to the boundary I'.

The weak formulation is constructed over the local sub-
domains, which are located inside the global domain Q. The local
sub-domains may overlap with each other and must cover the
whole global domain. Various shapes with different sizes can be
chosen as sub-domains, but appropriate ones should be consid-
ered to obtain precise outcomes. Since the global domain of the
rectangular plate is hexahedral, brick-shaped local domains are
considered as sub-domain and support domain (see Fig. 1).
Selecting the brick-shaped local domain makes the mapping
procedure easy and no special treatment is needed when the local
sub-domain intersects the global boundary.

2.1. Local symmetric weak form for 3D elastic body

The generalized local weak form of the equilibrium equations
over a local sub-domain around node I is written as follows:
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where u;, v; are the trial and the test functions, respectively and
can be chosen from different functional spaces. In Eq. (3), the term

sub-domain €
X of node 1
local boundary Q=T ;
Jfor an internal node I,

Fig. 1. Brick-shaped sub-domains in the global domain of a rectangular plate.
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