
A study of three-dimensional edge and corner problems using the
neBEM solver

Supratik Mukhopadhyay�, Nayana Majumdar

INO Section, Saha Institute of Nuclear Physics, 1/AF, Sector 1, Bidhannagar, Kolkata 700064, WB, India

a r t i c l e i n f o

Article history:

Received 14 January 2008

Accepted 11 June 2008
Available online 3 August 2008

Keywords:

Boundary element method

Triangular element

Singularity

Electrostatics

Potential

Flux

Capacitance

Charge density

Corner

Edge

a b s t r a c t

The previously reported neBEM solver has been used to solve electrostatic problems having three-

dimensional edges and corners in the physical domain. Both rectangular and triangular elements have

been used to discretize the geometries under study. In order to maintain very high level of precision, a

library of C functions yielding exact values of potential and flux influences due to uniform surface

distribution of singularities on flat triangular and rectangular elements has been developed and used.

Here we present the exact expressions proposed for computing the influence of uniform singularity

distributions on triangular elements and illustrate their accuracy. We then consider several problems of

electrostatics containing edges and singularities of various orders including plates and cubes, and

L-shaped conductors. We have tried to show that using the approach proposed in the earlier paper on

neBEM and its present enhanced (through the inclusion of triangular elements) form, it is possible to

obtain accurate estimates of integral features such as the capacitance of a given conductor and detailed

ones such as the charge density distribution at the edges/corners without taking resort to any new or

special formulation. Results obtained using neBEM have been compared extensively with both existing

analytical and numerical results. The comparisons illustrate the accuracy, flexibility and robustness of

the new approach quite comprehensively.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

One of the elegant methods for solving the Laplace/Poisson
equations (normally an integral expression of the inverse square
law) is to set up the boundary integral equations (BIE) which lead
to the moderately popular boundary element method (BEM). In
the forward collocation version of the BEM, surfaces of a given
geometry are replaced by a distribution of point singularities such
as source/dipole of unknown strengths. The strengths of these
singularities are obtained through the satisfaction of a given set of
boundary conditions that can be Dirichlet, Neumann or of the
Robin type. The numerical implementation requires considerable
care [1] because it involves evaluation of singular (weak, strong
and hyper) integrals. Some of the notable two-dimensional (while
all the devices are three-dimensional by definition, useful insight
is often obtained by performing a two-dimensional analysis) and
three-dimensional approaches used to evaluate the singular
integrals are discussed in [1–7] and the references in these
papers. It is well-understood that many of the difficulties in the
available BEM solvers stem from the assumption of nodal

concentration of singularities which leads to various mathema-
tical difficulties and to the infamous numerical boundary layers
[8,9,33] when the source is placed very close to the field point ([2]
and Refs. [4–6] therein). While mathematical singularities (that
occur when the source and field points coincide) have been shown
to be artifacts, several techniques have been used to remove
difficulties related to physical or geometrical singularities (that
occur when boundaries are degenerate, i.e., geometrically singu-
lar, or due to a jump in boundary conditions) such as Gaussian
quadrature integration, mapping techniques for regularization,
bicubic transformation, nonlinear transformation and dual BEM
techniques [8]. The last technique seems to be a popular one
and capable of dealing with a relatively wide range of similar
problems.

Departing from the approaches mentioned in the above
references and many more to be mentioned below, we had shown
in an earlier paper [10] that many of these problems can be
eliminated or reduced if we adopt a new paradigm in which the
elements are endowed with singularities distributed on them,
rather than assuming the singularities to be concentrated at
specific nodal points. Despite a large body of literature, closed
form analytic expressions for computing the effects of distributed
singularities are rare [11,12], complicated to implement and, often,
valid only for special cases [13–15]. For example, in [11], the
integration of the Green function to compute the influence of a
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constant source distribution is modified to an ‘‘n-plane’’ integra-
tion. The evaluation of this integration involves co-ordinate
transformations and the resulting expressions are rather compli-
cated. In [12], the Gauss–Bonnet concept is used in which the
panel is projected onto a unit sphere and the solid angle is
determined from the sum of the induced angles. The procedure
and the resulting expressions are neither simple, nor easy to
implement in a computer code. In fact, possibly due to these
difficulties, these approaches have remained relatively unpopular
and even in very recent papers it is maintained that for evaluating
the influence due to source distributed on triangular elements in a
general case, one must apply non-analytic procedures [14]. Thus,
for solving realistic but difficult problems involving, for example,
sharp edges and corners or thin or closely spaced elements,
introduction of special formulations (usually involving fairly
complicated mathematics, once again) becomes a necessity
[8,16,33]. These drawbacks are some of the major reasons behind
the relative unpopularity of the BEM despite its significant
advantages over domain approaches such as the finite-difference
and finite-element methods (FDM and FEM) while solving non-
dissipative problems [17,18].

The Inverse Square Law Exact Solutions (ISLES) library
developed in conjunction with the nearly exact BEM (neBEM)
solver [10], in contrast, is capable of truly modeling the effect
of distributed singularities precisely and, thus, is not limited by
the proximity of other singular surfaces or their curvature or their
size and aspect ratio. The library consists of analytic solutions for
both potential and flux due to uniform distribution of singularity
on flat rectangular and triangular elements. These close-form
exact solutions, termed as foundation expressions, are in the form
of algebraic expressions that are long but without complications
and are fairly straight-forward to implement in a computer
program. In deriving these foundation expressions, while the
rectangular elements were allowed to be of any arbitrary size
[10,19], the triangular element was restricted to be a right-angled
triangle of arbitrary size [20–22]. Since any real geometry can be
represented through elements of the above two types (or by the
triangular type alone), this library has allowed us to develop the
neBEM solver that is capable of solving three-dimensional
potential problems involving arbitrary geometry. It may be noted
here that any non-right-angled triangle can be easily decomposed
into two right-angled triangles. Thus, the right-angled triangles
considered here, in fact, can take care of any three-dimensional
geometry.

A set of particularly difficult problems to be dealt with by BEM
is one that contains corners and edges and, in this work, we will
attempt to solve several problems belonging to this set. The
perfectly conducting bodies studied here are unit square plate,
L-shaped plate, cube, L-shaped volume and two rectangular plates
meeting at various angles and creating an edge. Besides being
interesting and difficult, these solutions can have significant
applications in micro-electromechanical systems (MEMS), nano-
devices, atomic force microscopy (AFM), electro-optical elements,
micro-pattern gas detectors (MPGD) and many other disciplines in
science and technology. For these problems, it is important to
study integral features such as the capacitance of the conductors,
as well as detailed features such as the charge density, potential
and flux on various surfaces of these objects including regions
close to the geometric singularities. While several approaches
including FDM, FEM, BEM and its variants such as the surface
charge method (SCM) and various implementations of the Monte-
Carlo technique (often coupled with Kelvin transformation) have
been used to study these problems, only the latter two
approaches, namely, BEM and Monte-Carlo technique are found
to possess the precision necessary to model the curiously difficult
electrostatics with acceptable levels of accuracy [23]. The volume

discretization methods are known to be unsuitable because of the
open nature of the problem and the inadequate representation of
edge and corner singularities. Methods using Kelvin inversion (or
quadratic inversion), although accurate, have been found incap-
able of handling planar problems. It may be noted here that
despite the usefulness of two-dimensional analysis, there are an
overwhelming number of problems that need to be addressed in
three dimensions. As a result, several interesting approaches have
been developed to analyze edge and corner related problems in
complete three dimensions, without even the assumption of axial
symmetry. In order to maintain applicability in the most general
scenarios, in this work we will deal with the problems of edge and
corner as truly three-dimensional objects even when comparing
the results with two-dimensional analytic ones.

The problem of estimation of capacitance of square plate and
cube raised to unit volt has been studied by an especially large
number of workers using entirely different approaches. In fact,
these have been considered to be some of the major unsolved
problems of electrostatics, of which a solution is said to have been
given by Dirichlet and subsequently lost. One of the more popular
numerical approaches used to explore these problems is the
BEM/SCM [13,24–28]. Some of the solution attempts are more
than a century old and yielded quite acceptable results. The later
studies [13,27,28] used the mesh refinement technique and
extrapolation of N (the number of elements used to discretize a
given body) to infinity in order to arrive at more precise estimates
of the capacitance. In order to carry out this extrapolation,
uniform charge density scenario has been maintained so that the
form of charge distribution on individual segments becomes
irrelevant. According to [28], it is justified to use uniform charge
density on individual elements because increase in complexity
through the use of non-uniform charge density ultimately does
not lead to computational advantage. In [28], the author mentions
that for the cube, the element sizes are made such that the charge
on each element remains approximately a constant (independent
of its distance from an edge) since this arrangement is found to
give the most accurate results.

The problem of estimation of the order of singularities at edges
and corners of different nature is strongly coupled with the
problem of estimation of integral properties such as the
capacitance of conductors of various shapes. Thus, this problem,
which also has importance in relation to other areas of science
and technology as discussed earlier, has attracted the attention of
a large number of workers as well. Here, fortunately, some
analysis has been possible using purely theoretical tools [29,30],
at least for two-dimensional cases. In [31], the authors used a
singular perturbation technique to obtain the singularity index at
inside and outside corners of a sectorial conducting plate.
Similarly, corner singularity exponents were numerically obtained
in [28]. According to [32], it was possible to achieve accuracy of
one in million through the use of FEM approximations for both
electrodes and surface charge density, in addition to proper
handling of edge and corner singularities. In this investigation, the
Fichera’s theorem was used to correctly describe the peculiarities
of surface charge density behavior in the vicinity of the electrode
ribs and tips.

According to another recent work [33], low-order polynomials
used to represent the corners and edges lead to errors in
estimation of the derivatives of the potential, and that is the crux
of the problem. Despite its advantages (no prior knowledge of
singular elements and the order of singularity is necessary) and
good convergence characteristics, the mesh refinement approach
has been mentioned to be less accurate than two other methods,
namely, (1) singular elements, and (2) singular functions. Among
these, beforehand knowledge of the location and behavior of the
singularity in terms of the order of singularity is required for (1).
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