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a b s t r a c t

This paper presents a new radial-basis-function (RBF) technique for solving elliptic differential

equations (DEs). The RBF solutions are sought to satisfy (a) the boundary conditions in a local sense

using the point-collocation formulation, (b) the governing equation in a global sense using the Galerkin

formulation. In contrast to Galerkin finite-element techniques, the present Neumann boundary

conditions are imposed in an exact manner. Unlike conventional RBF techniques, the present RBF

approximations are constructed ‘‘locally’’ on grid lines through integration and they are expressed in

terms of nodal variable values. The proposed technique can provide an approximate solution that is a Cp

function across the subdomain interfaces (p—the order of the DE). Several numerical examples are

presented to demonstrate the attractiveness of the present implementation.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The mathematical modelling of engineering problems usually
leads to sets of ordinary/partial differential equations (ODEs/
PDEs) and their boundary conditions. To seek solutions to
differential problems, for most cases, it is necessary to employ
discretisation methods to reduce the sets of DEs to systems of
algebraic equations. Principal discretisation methods (e.g. finite-
difference, finite-element and boundary-element techniques) can
be viewed as variants of the method of weighted residuals that
can be stated in three well-known formulations, namely the
strong, weak and inverse statements [1]. By means of weighting
functions in a statement, the residuals for the DE and boundary
conditions are made small in some senses. Two popular ways used
are (i) the point-collocation approach, where the residuals are
zero at certain points, (ii) the Galerkin-type approach, in which
the residuals are zero in an average sense over the space of
interest. Each approach has some advantages in certain areas of
application. The former is cost-effective as no integrations are
required, while the latter has a smoothing capability owing to its
integral nature.

Radial-basis-function (RBF) collocation methods are consid-
ered as a powerful tool for the approximation of scattered data as
well as for the solution of differential problems [2]. RBF
collocation methods are capable of approximating arbitrarily-well
continuous functions. A number of RBFs such as the multiquadric

and Gaussian basis functions have spectral approximation power.
However, the condition number of the RBF interpolation matrix
also grows rapidly with respect to (a) the decrease in distance
between the RBF centres, (b) the increase in the RBF width. The
methods thus, in practice, suffer from a trade-off between
accuracy and stability [3]. Moreover, there is a gap in accuracy
between the RBF solutions to Neumann- and Dirichlet-type
boundary-value problems. To improve the numerical stability of
a RBF solution, there are a number of schemes proposed in the
literature: for example, (a) preconditioners (e.g. [4]); (b) local RBF
approximations (e.g. [5,6]); (c) compactly-supported RBFs (e.g.
[7]); (d) domain decompositions (e.g. [8,9]). Recently, an approx-
imation scheme, which is based on point collocation, Cartesian
grids and one-dimensional integrated RBF networks (1D-IRBFNs),
has been proposed in [10,11]. A problem domain, which can be
regular or irregular, is discretised by a Cartesian grid. Along grid
lines, 1D-IRBFNs are constructed to satisfy the governing DE
together with boundary conditions in an exact manner. The
‘‘local’’ 1D-IRBFN approximations at a grid node involve only
nodal points that lie on the grid lines intersected at that point
rather than the whole set of nodes. This scheme allows a larger
number of nodes to be employed.

There are very few papers on the use of RBFs in the context of
Galerkin approximation [2]. Galerkin RBF techniques have been
considered in [2,12–14]. In those works, conventional RBF
approximations were employed. A function is decomposed into
RBFs; its derivatives are then obtained through differentiation. In
this study, we present a new numerical scheme, which is based on
the Galerkin formulation and 1D-IRBFNs, for solving elliptic
problems. From a Galerkin-approach point of view, it will be
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shown that the proposed technique has several advantages: (a)
natural boundary conditions are forced to be satisfied exactly, (b)
multiple boundary conditions are incorporated more efficiently.
From a RBF-approach point of view, it will be shown that (a) the
proposed method is capable of handling much larger data sets, (b)
its accuracy is considerably better than that of the 1D-IRBFN
collocation technique, (c) it is able to yield almost the same levels
of accuracy for the solutions of Neumann- and Dirichlet-type
problems. An additional attractiveness of the proposed technique
is that it facilitates a higher-order continuity of the approximate
solution across the subdomain interfaces.

The paper is organised as follows. Brief reviews of the Galerkin
formulation and 1D-IRBFNs are given in Sections 2 and 3,
respectively. The Galerkin 1D-IRBFN method is presented in
Section 4, followed by several numerical examples in Section 5
to demonstrate the attractiveness of the proposed method.
Section 6 concludes the paper.

2. Galerkin approach

The Galerkin-type approach is well documented in the
literature. The reader is referred to, see, for example, [1,15,16],
for a full comprehensive description. A brief review of this
approach is given below.

Consider a boundary-value problem defined by a linear DE and
its boundary conditions

LðūÞ ¼ 0; x 2 O, (1)

BðūÞ ¼ 0; x 2 G, (2)

where ū is the field/dependent variable (the overbar denotes the
exact solution), L and B the prescribed known operators, O the
domain of interest and G the boundaries of the domain O.

An approximate solution, denoted by u, to the set of (1) and (2)
can be sought in the form

ūðxÞ � uðxÞ ¼
XN

i¼1

aifiðxÞ, (3)

where faig
N
i¼1 is the set of unknown coefficients and ffiðxÞg

N
i¼1 the

set of linearly-independent functions. The terms fi are usually
referred to as the trial/basis/approximating functions.

Assume that a function u is constructed to satisfy the DE (1) at
every point on the domain O, it leads toZ
O

wLðuÞdO ¼ 0, (4)

for any function w that is bounded on O .
Similarly, assume that the function u also satisfies the

boundary conditions (2), it follows thatZ
G
~wBðuÞdG ¼ 0, (5)

for any bounded function ~w. The functions w and ~w are often
referred to as the weighting/test functions.

Under assumptions (4) and (5), the approximate solution u is
also the exact solution ū itself, and the system defined by (1) and
(2) is equivalent to the following integral statement:Z
O

wLðuÞdOþ
Z
G
~wBðuÞdG ¼ 0, (6)

which is satisfied for all bounded functions w and ~w.
However, in practice, one is able to employ finite sets of w and

~w in the above integral statements, which result in an approx-
imate solution.

If the weighting functions w and ~w have sufficient degrees of
continuity, integrations by parts can be applied to derivative

terms in (6), leading to other integral statements, namely the
weak and inverse forms, which can be expressed asZ
O

CðwÞDðuÞdOþ
Z
G

Eð ~wÞFðuÞdG ¼ 0, (7)

where the order of continuity required for the u solution is
reduced. One can thus use either (6) or (7) to determine the
approximate solution u. These integral forms of weighted
residuals will allow the approximation to be conducted sub-
domain by subdomain. Different types of w and ~w will constitute
different numerical approaches (e.g. point collocation, subdomain
collocation and Galerkin-type ones). For the Galerkin-type
approach, the weighting functions are chosen from the same set
of functions as the trial functions. This approach usually leads to
symmetric matrices.

3. One-dimensional integrated RBFNs

Consider a univariate function f ðxÞ. The basic idea of the
integral RBF scheme [17] is to decompose a pth-order derivative of
the function f into RBFs

dpf ðxÞ

dxp
¼
XN

i¼1

wigiðxÞ, (8)

where fwig
N
i¼1 is the set of network weights, and fgiðxÞg

N
i¼1 the set of

RBFs. For a convenient description of the integral scheme, we
replace the notation giðxÞ with the notation IðpÞi ðxÞ that contains
information about derivative order of f. By integrating (8), lower-
order derivatives and the function itself are then obtained

dp�1f ðxÞ

dxp�1
¼
XN

i¼1

wiI
ðp�1Þ
i ðxÞ þ c1, (9)

dp�2f ðxÞ

dxp�2
¼
XN

i¼1

wiI
ðp�2Þ
i ðxÞ þ c1xþ c2, (10)

..

.

df ðxÞ

dx
¼
XN

i¼1

wiI
ð1Þ
i ðxÞ þ c1

xp�2

ðp� 2Þ!

þ c2
xp�3

ðp� 3Þ!
þ � � � þ cp�2xþ cp�1, (11)

f ðxÞ ¼
XN

i¼1

wiI
ð0Þ
i ðxÞ þ c1

xp�1

ðp� 1Þ!

þ c2
xp�2

ðp� 2Þ!
þ � � � þ cp�1xþ cp, (12)

where Iðp�1Þ
i ðxÞ ¼

R
IðpÞi ðxÞdx; Iðp�2Þ

i ðxÞ ¼
R

Iðp�1Þ
i ðxÞdx; . . . ; Ið0Þi ðxÞ ¼R

Ið1Þi ðxÞdx, and fc1; c2; . . . ; cpg are the constants of integration.
Unlike conventional differential schemes, the starting point of the

integral scheme can vary in use, depending on the particular applica-
tion under consideration. The scheme is said to be of order p, denoted
by IRBFN-p, if the pth-order derivative is taken as the starting point.

Evaluation of (8)–(12) at a set of collocation points fxjg
N
j¼1 leads

to

ddpf

dxp
¼ bIðpÞ

½p�ba, (13)d
dp�1f

dxp�1
¼ bIðp�1Þ

½p� ba, (14)

..

.

cdf

dx
¼ bIð1Þ½p�ba, (15)bf ¼ bIð0Þ

½p�ba, (16)
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