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ABSTRACT

For many engineers and acousticians, the boundary element method (BEM) provides an invaluable tool
in the analysis of complex problems. It is particularly well suited for the examination of acoustical
problems within large domains. Unsurprisingly, the widespread application of the BEM continues to
produce an academic interest in the methodology. New algorithms and techniques are still being
proposed, to extend the functionality of the BEM, and to compute the required numerical tasks with
greater accuracy and efficiency. However, for a given global error constraint, the actual computational
accuracy that is required from the various numerical procedures is not often discussed. Within this
context, this paper presents an investigation into the discretisation and computational errors that arise
in the BEM for acoustic scattering. First, accurate routines to compute regular, weakly singular, and
nearly weakly singular integral kernels are examined. These are then used to illustrate the effect of the
requisite boundary discretisation on the global error. The effects of geometric and impedance
singularities are also considered. Subsequently, the actual integration accuracy required to maintain a
given global error constraint is established. Several regular and irregular scattering examples are

investigated, and empirical parameter guidelines are provided.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The numerical solution of boundary integral equations via the
boundary element method (BEM) has become a popular approach
for solving acoustical problems. The now ubiquitous presence of
high-speed computing has made it possible for engineers and
acousticians to investigate any number of complex scenarios for
which analytical solutions do not exist, or for which approximate
solutions are not well suited. Unsurprisingly, the widespread
application of the BEM continues to produce an academic interest
in the methodology. New algorithms and techniques are still being
proposed which extend the functionality of the BEM and allow the
required numerical tasks to be computed with greater accuracy
and efficiency. There are now a myriad of approaches for
formulating the governing equations, discretising and computing
the boundary quantities, computing singular integrals, and
ensuring the uniqueness of the final solution. However, the
overwhelming extent of the available literature paradoxically
increases the difficulty of understanding the technique. Much of
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the advanced literature is focused on very specific aspects of the
BEM and the consequence of utilising particular numerical
routines or element types on the overall problem accuracy is
not always immediately clear.

In an academic sense, formal mathematical investigations on
the convergence of the various discretisation and numerical
procedures lie within the (now) historical literature (e.g., [1,2]).
In contrast, within engineering fields it is recurrently only the
relative number of elements that is considered, with six elements
per wavelength the most frequently prescribed guideline (see [3]
and references therein). In fact, the errors in the BEM can arise
from several distinct locations:

the discrete approximation of the varying boundary quantities;
the discrete approximation of the boundary geometry;
geometric and impedance singularities;

the numerical computation of regular integrals;

the numerical computation of singular integrals;

and, the solution of the system of equations.

The first three may be regarded as discretisation errors, the next
two as quadrature errors, and the last incorporates the well-
known non-uniqueness difficulty. Despite the continual advances
in numerical and BEM literature, the actual accuracy that is
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required from the various computations to maintain a given level
of global accuracy is rarely discussed. In this context, these errors
are explored in detail here, primarily in relation to the direct
collocation BEM for the two-dimensional (2D) Helmholtz equa-
tion. The investigation is practical in nature, rather than
mathematically formal, and empirical guidelines are established
for the various error constituents.

The basic formulation and use of the collocation BEM is well
known (e.g., [4-7]). Arbitrary boundary surfaces are first dis-
cretised into a finite number of boundary elements. Across
each element, approximations are made about the variation of
the boundary quantities (the pressure and velocity in the direct
BEM) and geometry. The boundary quantities are assigned
at a discrete number of nodes per element (referred to as the
element order), and shape functions are used to approximate the
values at the other positions. The variation of the boundary
geometry is modelled in the same way. The overall computational
effort is directly related to the total number of boundary
nodes (often referred to as the number of system degrees of
freedom).

Considering first only the error associated with the discretised
approximation of the varying boundary quantities, the solution
convergence with various mesh modifications is well documented
(e.g., [8]). If the number of elements is increased without
modifying the number of nodes per element (the so-called
refinement or h-method), an algebraic convergence related to
the element order is obtained as the total number of degrees of
freedom is increased. If the number of elements is kept constant
and instead the number of nodes per element is increased (the so-
called enrichment or p-method), an exponential convergence is
obtained. However, if the boundary is not smooth, i.e., it contains
geometric or impedance singularities, the convergence of the
p-method degenerates. Boundary singularities occur because of
abrupt changes or discontinuities in the surface profile or its
properties. These cause the solution and its derivatives to vary
rapidly or become unbounded [9]. A combination of the refine-
ment method near boundary singularities and the enrichment
method elsewhere (the so-called hp-method) can restore the
exponential convergence of the p-method [10,11].

In addition to the number of elements (and nodes per
element), the continuity of the quantities around the boundary,
enforced by the element type, is also of importance. If the outer
nodes on each element are placed at the endpoints and shared
between adjoining elements, the surface quantities remain
continuous around the boundary. Continuous isoparametric linear
and parabolic elements are the most widely used in engineering
applications [3]. Alternatively, if the outer nodes are located
within the element, the boundary quantities become discontin-
uous. Compared to continuous elements, this requires an increase
in the overall number of nodes to describe the same order of
boundary variation (as nodes are no longer shared between
elements). Despite this, if the nodes are positioned correctly,
discontinuous elements can provide an increase in accuracy for
the same number of system degrees of freedom [12]. For three-
dimensional quadrilateral or triangular elements, the zeros of the
Legendre polynomials provide this optimum position. Discontin-
uous elements also have the distinct advantage of the normal
direction always being well defined. Similarly, they naturally
satisfy the C! continuity condition.

In contrast to the approximation of the boundary quantities,
the variation of the boundary geometry should remain continuous
from one element to the next. For discontinuous boundary
quantities, this requires the use of continuous shape functions
based on a different set of nodal values. However, this does not
add any particular computational complexity, as the geometric
coordinates of the utilised nodes are required in any case. Rather,

the inherent separation of the boundary geometry and quantities
makes it straightforward to use non-isoparametric elements.
This is computationally efficient when using higher-order shape
functions to describe the variation of the boundary quantities for
simple boundary geometries. The requirement for the geometric
discretisation is that the variation of the boundary elements
matches that of the underlying problem. For isoparametric linear
elements, the error from the geometric discretisation of curved
boundaries is of the same order as that from the discretisation of
the boundary quantities [8].

Returning to the convergence of the BEM, rather than simply
uniformly increasing the total number of elements or nodes to
improve accuracy, local error indicators can be used to specify
regions where the boundary discretisation must be refined [13].
The use of suitable adaptive methods can significantly improve
the rate of convergence, as degrees of freedom automatically
become concentrated near boundary singularities and other areas
where the surface quantities vary rapidly [13-16]. However, the
computation of many error indicators (upon which the adaptive
procedures rely) is very expensive; on the order of the BEM
analysis itself [ 17]. Moreover, at each step of the mesh refinement,
the problem must be recomputed. As an alternative, boundary
meshes may be graded a priori so that the optimal values of
convergence are maintained [11,18]. Similarly, boundary singula-
rities may also be counteracted by using specially designed
interpolation functions [8].

Apart from discretisation errors, the computation of the
element-wise boundary integration (typically via numerical
quadrature) may also introduce errors into the BEM. In a
commercial BEM package, the modification of the quadrature
routines is unlikely to be facilitated. Moreover, in classical studies,
the quadrature error is rarely considered important in comparison
with that from the boundary discretisation (e.g., [19]). However,
care must be taken that it is sufficiently small [20]. For regular
integrals, this constraint is of no particular consequence as
standard quadrature routines are able to compute the required
integration tasks very accurately. Nonetheless, it is important to
ensure that singular and nearly singular integrals can be
computed with the same accuracy. This is particularly important
for boundaries that yield coefficient matrices where the diagonal
(singular) terms are dominant. Although integration errors can
generally be reduced by increasing the order of the quadrature
routines, doing so arbitrarily without consideration of the actual
accuracy requirements can result in a significant computational
penalty.

The final source of error relates to the solution of the system of
equations for the unknown boundary quantities. For a well-
conditioned coefficient matrix, this error is negligible. However, at
certain characteristic frequencies that depend on the problem
geometry, the solution may no longer be unique. This non-
uniqueness has no physical analogy and is simply a mathematical
artefact of the integral formation; the objective problem itself has
a unique solution. These (so-called) characteristic frequencies
occur at the resonant frequencies of the corresponding interior
Dirichlet problem (the non-uniqueness problem occurs because
the interior and exterior operators are adjoint [21]). The most
mathematically robust way to overcome this difficulty is to use
the Helmholtz integral equation in combination with its normal
derivative. The latter conversely suffers from non-uniqueness at
the resonant frequencies of the interior Neumann problem. Burton
and Miller showed that the two integral equations share only one
common solution and thus their combination will overcome the
mathematical uniqueness difficulty [22]. However, the normal
derivative integral equation contains a hyper-singular integral
kernel which is numerically formidable (the integral does not
exist because of divergent terms in the primitive function of the
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