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Abstract

In this paper, a three-dimensional finite element analysis is used to study the strain, stress and stain energy density distributions in
quantum dots (QDs) arrays. Two different QD geometries are simulated: truncated-pyramidal and lens-shaped. The effect of the material
anisotropy and the cap layer thickness on the elastic fields is studied. The simulation results show that the material anisotropy has
significant influence on the strain distribution. The average compressive strain ¢, in the QDs increases as the anisotropy ratio A increases
from 1.0 to 4.0, while it decreases as A is reduced from 1.0 to 0.25. When the anisotropy ratio 4> 1, [100] and [T 00] are the “‘elastic soft”
directions with the strain ¢,, decaying rapidly in these directions. However, these lattice directions become “‘elastic hard” when A <1.
Due to the elastic interaction among the QDs, various distributions of strain energy density can be obtained by changing the material
anisotropy and the cap layer thickness, possibly resulting in different vertically ordered QD structures. The distribution of the strain
energy minima at the cap layer surface is not sensitive to the two different QD shapes studied, though the strain and stress distributions in

the QDs and the matrix are.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Quantum dots (QDs) are nanometer-sized semiconduc-
tor structures, usually made from semiconductor materials
like silicon, germanium, cadmium selenide, gallium ar-
senide and so on. In recent years, QDs have drawn
immense attention due to its potential application in a wide
variety of novel optoelectronic and microelectronic devices,
such as light emitting diodes, photovoltaic cells, and
quantum semiconductor lasers [1,2]. An effective method
of fabricating QDs is to grow the dots directly by
depositing a thin layer of material on a substrate under
appropriate growth conditions. QDs can then evolve via
the Stranski-Krastanow (SK) growth mode that consists of
three-dimensional (3D) inlands growth on a two-dimen-
sional (2D) wetting layer. The driving force behind this SK
growth mode is the elastic fields induced by the lattice
misfit between the thin layer and the substrate [3,4]. Due to
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the misfit strain, the thin layer deposited on the substrate
roughens to form the QD islands.

QDs are often grown in multiple layers to form QD
superlattice. It is found that the elastic fields induced from
the buried QDs have a strong influence on QDs formation
in the subsequent layer [5]. The QDs tend to align directly
on top of the buried QDs and form a vertical aligned
structure. It is well accepted that this vertical correlation is
a direct result of the strain or stress induced by the buried
islands. Experiments have also showed that the QDs can
exhibit vertical anti-correlation [6]. This misalignment was
explained by the elastic anisotropy and the crystallographic
orientation of the materials, which resulted in the shift of
the locations of the strain energy minima [7].

Besides having strong influence on the QDs formation,
the strain and stress distributions also have a significant
effect on the electronic and optical properties of the QD
microstructure [8—12]. The strain and stress fields in the
QDs will (i) change the conduction and valence band levels
of the QD structure [8-10]; (ii) induce local electric fields
due to piezoelectric effect [11]; and (iii) modify the photon
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frequencies in the QDs [12]. Therefore, the elastic fields in
and around the QDs strongly affects the performance of
QD based microelectronic devices. For the above reasons,
it is often the goal to obtain highly ordered and regularly
sized QD superlattices.

QDs can exist in a wide variety of shapes, including
cuboidal, pyramidal, truncated-pyramidal, and lens-
shaped. The stress and strain fields in QDs structure can
be analyzed with many different modeling techniques,
which are generally classified into three main categories:
atomistic approach, analytical continuum approach, and
finite element approach. In the atomistic approach [13,14],
the ab-inito atomic simulations or classical molecular
dynamics simulations with empirical potentials are used
to calculate the strain fields. Because a large number of
atoms is required in the analysis (especially for a QD
superlattice array), this approach is computationally
intensive and usually pose a very low maximum limit to
the length and time scales of the model. In the analytical
continuum approach [15-18], the QDs are treated as
inclusions in an infinite matrix. The elastic fields due to
the lattice mismatch between the QDs and the matrix are
obtained by integrating the Green’s function over the
volume of the inclusions. However, the integration can
only be done for some simple inclusion shapes, such as
cuboid, pyramid and truncated pyramid. In the finite
element approach [19-21], the finite element method
(FEM) is employed to determine the strain and stress
distributions in the QD microstructure. Comparing to the
above two approaches, the FEM technique is more efficient
and can be used for structures of any geometrical shape.

Previous studies are mainly on the elastic field of a single
QD, which prove to be insufficient as recent experiments
[22] showed that the elastic interaction (interference)
between QDs has a strong influence on the vertical
alignment. In this paper, we have used three-dimensional
FEM simulations to study the clastic ficlds of a QD array.
We studied how the elastic anisotropy and the thickness of
the cap layer both contribute to the vertical ordering of the
QD layers. We also studied two different QD shapes
(truncated-pyramidal and lens-shaped) and analyze the
sensitivity of island geometry to the elastic fields.

2. Finite element modeling

In the FEM, the displacement vector D(x,y,z) is
interpolated using shape functions

D = Nd, (1)

where the nodal displacement vector d, (for a three-
dimensional hexahedral element) is given by

Al ={d) dno ds dy dos dog dg deg) 2)

in which the displacement at node i is given as

deTi:{”i v ow} i=1,2,...,8 3)

The shape function matrix is given by

N=[N; N> N3 Nsg Ns Ng N; Ng] 4)

in which each sub-matrix N; (i = 1,2,...,8) is

N; 0 0
N=[0 N 0| i=12,...,8 (5)
0 0 N

The shape function for a linear, hexahedral element can be
described as

Ni= (1 + &M +m)(1 +L8) i=1,2,...,8 (6)

where £, n and { are the natural coordinates of a unit cube
that each hexahedron element is being mapped to. The
general equation of motion can be obtained by using
Lagrange’s equation, which takes on the general form of

a(or)
dr\ag;

where T is the kinetic energy of the system, U is the strain
energy of the system, D is a dissipation function, g; is the
generalized displacements, and @, are the generalized
forces. However, since the problem here is a static problem,
the terms involving the kinetic energy can be omitted.
There is also no need for a dissipation function since we are
assuming that the structural damping of the material used
can be neglected. Eq. (1) can then be substituted into the
constitutive equation

oD U _

_+__Q ]=1,2,,7’l (7)
oq;  0g; J

g =c(e+er) ®)

where c is the elasticity matrix and et is the thermal strain.
The constitutive equation can then be substituted into the
Lagrange’s equation in Eq. (7) to obtain the form of the
equilibrium equation for each element

k.d, =f, )

where Kk, is the element stiffness matrix and f, is the element
force vector. The matrix equations for all the elements are
assembled to give

Kd=f (10)

where K is now the global stiffness matrix, d is the global
displacement vector, and f is the global force vector.
Eq. (10) can then be solved to obtain the global
displacements and hence the strain and stress in the model.
Detailed formulation of the finite element equations can be
obtained in most finite element literature.

Fig. 1 is an illustration of an array of truncated-
pyramidal QDs on a wetting layer deposited on a substrate
and the array is subsequently encapsulated by a cap layer.
The QDs are assumed to distribute uniformly in the array.
Due to periodicity of the structure, we only model the
central square area bounded by the heavy dotted lines,
which includes one complete QD and four quarter QDs.
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