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a b s t r a c t

In this paper, the Galerkin boundary node method (GBNM) is developed for the solution of stationary

Stokes problems in two dimensions. The GBNM is a boundary only meshless method that combines a

variational form of boundary integral formulations for governing equations with the moving least-

squares (MLS) approximations for construction of the trial and test functions. Boundary conditions in

this approach are included into the variational form, thus they can be applied directly and easily despite

the MLS shape functions lack the property of a delta function. Besides, the GBNM keeps the symmetry

and positive definiteness of the variational problems. Convergence analysis results of both the velocity

and the pressure are given. Some selected numerical tests are also presented to demonstrate the

efficiency of the method.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Meshless (or meshfree) methods for numerical solutions of
boundary value problems have generated much attention in
recent years [1,2]. As opposed to the finite element method (FEM)
and the boundary element method (BEM), the main feature of this
type of method is the absence of an explicit mesh, and the
approximate solutions are constructed entirely based on a cluster
of scattered nodes. Although many kinds of meshless methods
have been proposed, these methods can be simply divided into
domain type and boundary type. Several domain type meshless
methods, such as the element free Galerkin method (EFGM) [3],
the generalized FEM [4], the h2p meshless method [5,6], the
reproducing kernel particle method [1], the moving least-square
(MLS) reproducing kernel method [1], the reproducing kernel
element method [1] and the finite point method [7] are very
promising methods, and their mathematical foundations were
well investigated.

Boundary integral equations (BIEs) are attractive computa-
tional techniques for linear and exterior problems as they can
reduce the dimensionality of the original problem by one.
Especially for exterior problems, the use of domain type methods
requires discretization of the entire exterior, whereas with BIEs
only the surface needs to be discretized. The boundary type
meshless methods are developed by the combination of the
meshless idea with BIEs, such as the boundary node method
(BNM) [8], the boundary cloud method [9], the hybrid boundary

node method [10], the boundary point interpolation method [11],
the boundary element-free method [12] and the Galerkin
boundary node method (GBNM) [13]. Compared with the domain
type meshless methods, they require only a nodal data structure
on the bounding surface of a body whose dimension is less than
that of the domain itself. So like the BEM, they are superior in
treating problems dealing with infinite or semi-infinite domains.
Nevertheless, most boundary type meshless methods found
in the literature lack a rich mathematical background to justify
their use.

The BNM is formulated using the MLS approximations and the
technique of BIEs. This method exploits the dimensionality of BIEs
and the meshless attribute of the MLS. However, since the MLS
approximations lack the delta function property, the BNM cannot
exactly satisfy boundary conditions. This issue becomes even
more severe in the BNM because a large number of boundary
conditions need to be satisfied. The strategy employed in the BNM
[8] involves a new definition of the discrete norm used for the
generation of the MLS approximations, which doubles the number
of system equations.

Based on the BNM, the GBNM is proposed by Li et al. [13],
which has combined the MLS technique and an equivalent
variational form of BIEs. The MLS approximations are used to
generate the trial and test functions. In contrast with the BNM,
boundary conditions in the GBNM can be implemented directly
and easily via multiplying the MLS shape function and integrating
over the boundary. Besides, the GBNM keeps the symmetry and
positive definiteness of the variational problems, a property that
makes the method an ideal choice for coupling the FEM or other
established meshless methods such as the EFGM. The GBNM has
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been applied to problems of Laplace equation [13] and biharmonic
equation [14], and for Stokes equation with slip boundary
conditions [15].

In this paper, the GBNM is further developed for solving the 2D
Stokes equation with no-slip boundary conditions. The Stokes
problem has been usually applied to model incompressible
creeping flows where the fluid Reynolds number is very low. This
problem is the first step in order to consider the nonlinear
Navier–Stokes equations of incompressible fluids. BIEs have been
successfully implemented for the numerical computation of
Stokes problems [16–22]. Unlike domain type methods, the
incompressibility condition is automatically satisfied when BIEs
are used, so BIEs-based methods are well suited in solving the
Stokes problem especially for the exterior problem.

As in many other meshless methods such as the EFGM and the
BNM, background cells are used in the GBNM for numerical
integration over the boundary. Cells are used for integration only,
and have no restriction on shape or compatibility. The topology of
cells can be much simpler than that of elements in the BEM or the
FEM, since cells can be divided into smaller ones without affecting
their neighbors in any way—such is not the case with boundary or
finite elements. This feature makes meshless methods especially
suited for adaptive techniques [6,23]. In the case of the cell
structure is coincided with the boundary, error estimates of the
GBNM have been established in Sobolev spaces for problems in
potential theory [13,14] and fluid [15,24]. In general, as the
element in the BEM, the cell structure is an approximation of
the boundary. When there exists difference between the cell
structure and the boundary, the error results from the approx-
imation of the boundary by cells needs to be considered. In this
paper, we give the optimal asymptotic error estimates of the
GBNM for solving Stokes problems in Sobolev spaces.

The following discussions begin with the brief description of
the MLS approximation in Section 2. The formulations of the
GBNM for Stokes flows are developed in Section 3. Error estimates
are established in Section 4. Numerical examples are presented in
Section 5. Section 6 contains some conclusions.

2. The MLS approximation scheme

2.1. Notations

Let O be a bounded domain in R2 of points x ¼ ðx1; x2Þ, its
boundary G assumed to be sufficiently smooth, and let O0 be the
complementary of O ¼ Oþ G. For any point x 2 G, we use RðxÞ to
denote the domain of influence of x. Let QN ¼ fxig

N
i¼1 be an

arbitrarily chosen set of N boundary nodes xi 2 G. The set QN is
used for defining a finite open covering fRig

N
i¼1 of G composed of N

balls Ri centered at the points xi, i ¼ 1;2; . . . ;N, where Ri ¼ RðxiÞ

is the influence domain of xi. Assume that kðxÞ boundary nodes lie
on RðxÞ. Then, we use the notation I1; I2; . . . ; Ik to express the
global sequence number of these nodes, and define
4ðxÞ :¼ fI1; I2; . . . ; Ikg. Besides, we use

R
i :¼ fx 2 G : xi 2 RðxÞg; 1rirN ð1Þ

to denote the set of boundary points whose influence domain
includes the boundary node xi. For different boundary point x,
because RðxÞ varies from point to point, Ri

� Ri if and only if the
radii of RðxÞ is a constant for any x 2 G.

Let L be the length of G, then G is a curve having L-periodic
parametric representation with respect to the arc-length s,

x ¼ XðsÞ; s 2 ½0; L� ð2Þ

Obviously, XðsÞ is a mapping from R onto R2. Denoted by ‘ the
continuous order of G, then XðsÞ 2 ðC‘Þ2 and @mXðsÞ=@sm is bounded

provided that mr‘. From Eq. (2), boundary nodes xi can be
represented as xi ¼ XðsiÞ, 1rirN. Since G is closed, we set
s0 ¼ sN � L, then x0 ¼ xN . Let

h :¼ max
1rirN

ðsi � si�1Þ; hi :¼ jxi�1xi
���!

j ¼ jXðsiÞ � Xðsi�1Þj ð3Þ

then from the fact that @XðsÞ=@s is bounded we have

hi ¼ OðhÞ ð4Þ

Consequently, the parameter h can be used to measure the nodal
spacing.

2.2. The MLS technique

Assume that x 2 G, the MLS approximation for a given function
v is defined as [13]

vðxÞ �MvðxÞ ¼
XN

i¼1

FiðxÞvi ð5Þ

where M is an approximation operator, and

FiðxÞ ¼ FiðXðsÞÞ

¼

Xm
j¼0

PjðsÞ½A
�1
ðsÞBðsÞ�jk; i ¼ Ik 2 4ðxÞ;

0; i=24ðxÞ;

1rirN

8>><
>>: ð6Þ

and the matrices AðsÞ and BðsÞ being defined by

AðsÞ ¼
X

k24ðXðsÞÞ

wkðsÞPðskÞP
T
ðskÞ ð7Þ

BðsÞ ¼ ½wI1
ðsÞPðsI1

Þ;wI2
ðsÞPðsI2

Þ; . . . ;wIk ðsÞPðsIk Þ� ð8Þ

in which PðsÞ is a vector of the polynomial basis, m þ 1 is the
number of monomials in the polynomial basis, wk denote
nonnegative weight functions which belong to Ca

0 ðRiÞ, aZ0, and
satisfy

P
k24ðsÞwkðsÞ ¼ 1.

For error analysis, we impose the following conditions:

Assumption 1. There is a nonnegative integer gr‘ such that
FiðxÞ 2 CgðGÞ.

Assumption 2. There are positive integers K1ðxÞZm and K2ðxÞ
such that for any x 2 G, there are at least K1ðxÞ boundary nodes,
and at most K2ðxÞ boundary nodes lie on RðxÞ.

Assumption 3. There exist constants Cw1 and Cw2 independent
of h such that Cw1h�jrJ@jwiðsÞJL1ð½0;L�ÞrCw2h�j, 0rjrg,
1rirN.

From Eq. (4) and Assumption 2, it can be verified that the radii
of any boundary point’s influence domain can be measured by the
parameter h.

Proposition 2.1 (Li and Liu [1]).
P

i24ðxÞFiðxÞ ¼ 1.

Proposition 2.2 (Li and Zhu [13]). FiðxÞ 2 Cg
0ðR

i
Þ, 1rirN.

Theorem 2.1 (Li and Zhu [13]). For any vðxÞ 2 Hmþ1ðGÞ, there exists

a constant C independent of h such that

JvðxÞ �MvðxÞJHkðGÞrChmþ1�k
JvðxÞJHmþ1ðGÞ; 0rkrmrg ð9Þ

where HtðGÞ; t 2 R; denotes the Sobolev spaces of functions defined

on G [20,25].
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