ENGINEERING
ANALYSIS with
BOUNDARY
ELEMENTS

www.elsevier.com/locate/enganabound

A T 4 \
ELSEVIER Engineering Analysis with Boundary Elements 32 (2008) 545-555

Solution method of interface cracks in three-dimensional
transversely isotropic piezoelectric bimaterials

. * . . .
MingHao Zhao™, Na Li, CuiYing Fan
Department of Engineering Mechanics, Zhengzhou University, No. 100 Science Road, Zhengzhou, Henan Province, 450001, PR China

Received 22 May 2007; accepted 24 August 2007
Available online 22 October 2007

Abstract

An analysis method is proposed for planar interface cracks of arbitrary shape in three-dimensional transversely isotropic piezoelectric
bimaterials based on the analogy between the hyper-singular boundary integral-differential equations for interface cracks in purely
elastic media and those in piezoelectric media with the electrically impermeable crack condition. The poling direction is along the z-axis
of the Cartesian coordinate system and perpendicular to the interface. The singular indexes and the singular behaviors of the near crack-
tip fields are studied. The results show that the extended stress o..—c,D. has the classical singularity r~'/%, while the extended stress
0..+caD, possesses the well-known oscillating singularity #~'/?>*% or the non-oscillating singularity r~'/?>**, where ¢.. and D, are,
respectively, the stress and electric displacement components, and ¢, and ¢4 are two material constants. The three-dimensional
transversely isotropic piezoelectric bimaterials are categorized into two groups, i.c., e-group with non-zero value of ¢ and x-group with
non-zero value of x. Two new extended stress intensity factors Kj; and K, corresponding, respectively, to the extended stresses o..—c,D.
and o..+ ¢4D. are defined for interface cracks in three-dimensional transversely isotropic piezoelectric bimaterials. The material related
constants including ¢ or  for 15 bimaterials are calculated. The extended intensity factor of a penny-shaped interface crack is presented

as an application of the proposed method.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to the coupling effect between the mechanical and
electric properties, piezoelectric material has been widely
used in intelligent structures and systems. Multi-layered
structures are often used to utilize the accumulative results
of stacks to enhance the efficiency and sensitivity. Inter-
facial fracture is one of the major failure modes in these
structures. The analysis of interface cracks in piezoelectric
media has been drawing much attention [1-8]. The state of
the art till 2001 can be found in the review paper by Zhang
et al. [9]. In this field, one of the most interesting findings
is that beside the classical singularity r~'* and the well-
known oscillatory singularity r~ /2% the extended stresses
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have a new type of singularity r~'/>** near the crack tip in

piezoelectric bimaterials. In recent years, new develop-
ments have been made, e.g., see [10-13]. It is found that
transversely isotropic bimaterials with an impermeable
interface crack are divided into two classes corresponding
to the vanishing of the two singularity parameters ¢ or k.
For three-dimensional interfacial cracks in piezoelectric
media, however, only a few results are available due to the
complexity of the problem. Tian and Rajapakse [14]
discussed the axi-symmetric problem of an interfacial
penny-shaped crack in a piezoelectric bimaterial system.
Zhao et al. [15] derived the hyper-singular boundary
integral-differential equations for planar interface cracks
of arbitrary shape in three-dimensional two-phase trans-
versely isotropic piezoelectric media and the boundary
element method was used to solve these equations
numerically.

The objective of this paper is to present a method to
analyze planar interfacial cracks of arbitrary shape in
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three-dimensional piezoelectric bimaterials under electri-
cally impermeable boundary condition and to find
and characterize the singular behaviors of near crack-tip
fields.

2. Boundary integral—differential equations for interfacial
cracks

Consider a three-dimensional two-phase transversely
isotropic piezoelectric medium with the interface being
parallel to the plane of isotropy. A Cartesian coordinate
system is set up such that the xoy-plane lies in the interface.
There is a planar interface crack S of arbitrary shape in the
interface of the bimaterial as shown in Fig. 1. The upper
and lower surfaces of S are denoted by S and S,
respectively. The outer normal vectors of S and S~ have
the relation

{0,0,—1}. (1)

{nitls+ = —{ni}ls- =
On the upper and lower crack faces the applied extended

tractions satisfy the conditions
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The boundary integral-differential equations for the
interface crack are given [15]
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Fig. 1. An arbitrarily shaped planar interface crack S in the oxy plane in a
piezoelectric bimaterial.
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sin 0 = (n — y)/r, 7
lull, lIvll, and lwll are the displacement discontinuities,

respectively, along the x-, y- and z-axes, and llgll the
electric potential discontinuity across the crack faces,
which are called the extended displacement discontinuities
and are given by

[[u(x, )| = u(x,y,07) — u(x, p,07),

||U(x:y)|| = D(x:y: O+) - U(xsya 07)’

| |W(X, y)“ = W’(X, Vs 0+) - W(Xn Vs 07)7

||(P(X,y)|| = (P(X,y,0+)_(/7(x,y,0_)' (8)
In ECIS (3)7(6)7 Kzzla Kzla Kla Kz:27 KzZa K2> Kera K:GBa Kr
and K, are material related constants given in Appendix A.
It can easily be seen that the kernels in Egs. (3)—(6) have the
singularity >, and hence the integral-differential equa-
tions are hyper-singular.

3. Solution method of the integral equation

3.1. Solution method for the extended displacement
discontinuity ||w|| + c1||o]|

Combining Egs. (3) and (4), one obtains
K KZZ 1
(Kzzl - 2) / 1wl + erll@ll] 5 dS = —p.
st r

K,
+ (K1 /K>, ©)
where
o = K. — (Ki/K»)K:» . (10)

Kz:l - (Kl /KZ)KZZZ

Eq. (9) is the hyper-singular boundary integral equation
for the extended displacement discontinuity ||w|| + ¢1||@]].
For the same crack in a purely elastic medium, the
boundary integral equation of the displacement disconti-
nuity I W1l in the z-direction takes the same form [16]

E W1

Sei =) . 98 =), (11)
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