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Abstract

The method of fundamental solutions (MFS) is formulated in the frequency domain to model the sound wave propagation in three-

dimensional (3D) enclosed acoustic spaces. In this model the solution is obtained by approximation, using a linear combination of

fundamental solutions for the 3D Helmholtz equation. Those solutions relate to a set of virtual sources placed over a surface placed

outside the domain in order to avoid singularities. The materials coating the enclosed space surfaces can be assumed to be sound

absorbent. This effect is introduced in the model by imposing impedance boundary conditions, with the impedance being defined as a

function of the absorption coefficient. To impose these boundary conditions, a set of collocation points (observation points) needs to be

selected along the boundary.

Time domain responses are obtained by applying an inverse Fourier transform to the former frequency domain results. In order to

avoid ‘‘aliasing’’ phenomena in the time domain results, the computations introduce damping in the imaginary part of the frequency.

This effect is later removed in the time domain by rescaling the response.

After corroborating the present solution against the analytical solution, known in closed form for the case of a parallelepiped room

bounded by rigid walls, the model is used to solve the case of a dome.
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1. Introduction

The performance of rooms used for speech or music is
highly influenced by the correct choice of a set of
parameters during the design stage. The sound field
produced inside enclosed spaces is dependent on their
volume, geometry, coating materials, sound frequency, and
occupancy. For this reason, the acoustics of rooms has
been researched for many years in order to obtain models
and experimental results that will be helpful to acoustic
design. The modeling of the phenomena involved is not
simple and different numerical methods of varying com-
plexity have been developed.

There are classic statistical models, following the well-
known Sabine and Eyring theories that consider uniform
energy density distribution, and recently some statistical

models have been improved to include non-uniform
reverberating energy density distribution [1].
Methods based on geometric acoustics are also widely

used in room acoustics prediction. Among these methods is
the image source method [2,3] where the huge number of
virtual sources required can be a limitation, and the ray
tracing technique [4], valid in the high frequency range but
including a degree of uncertainty since it is not sure that all
the rays needed are included in the response. There are also
hybrid methods combining those two [5].
Methods requiring domain discretization such as the

finite element method (FEM), the finite difference method,
and the boundary element method (BEM), have not been
widely used to compute the propagation of sound, because
of the high computation cost entailed. The FEM [6] and
the finite difference method [7] fail because the domain
under consideration has to be fully discretized, and very
fine meshes are needed to solve excitations at high
frequencies. Methods like the BEM [8] are more efficient
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in terms of computer cost as they only require the
discretization of the boundaries, but they involve a
large computational effort, particularly for very high
frequencies.

Recently, several researchers have focused their work on
meshless methods in order to avoid the time-consuming
problem originated in mesh generation for complicated
geometries. These methods have been used to solve some
acoustic problems. The method of fundamental solutions
(MFS) is applicable when a fundamental solution of the
differential equation in question is known. Recent survey
papers describe the method and various applications for it
[9–11]. In Ref. [11], Fairweather et al. described and
reviewed the MFS and related methods for the numerical
solution of scattering and radiation problems in fluids and
solids. Alves and Valtchev compared the plane waves
method and the MFS for acoustic wave scattering [12].
Suleau and Bouillard applied the element-free Galerkin
method to compute harmonic solutions of acoustic
problems, governed by a Helmholtz equation [13]. Chen
et al. employed the boundary collocation method using
radial basis functions for the acoustic eigenanalysis of
three-dimensional (3D) cavities [14]. In this paper, the
MFS method is implemented to model a 3D acoustic
problem. This method suffers from ill-conditioning of the
system’s linear equations, which is common when external
source collocation methods are applied. Several techniques
have been developed to handle the ill-conditioning of
similar meshless collocation methods. Some use compactly
supported radial basis functions [15], while others incor-
porate the least squares approach [16,17], apply a pre-
conditioning technique [18] or use the matrix-free greedy
algorithm [19].

Although the single value decomposition method
(SVD) has traditionally been employed to solve ill-posed
problems, in the case of the MFS, Chen et al. [20]
demonstrated that the SVD is no more reliable than
Gaussian elimination for non-noise boundary conditions.
However, for noise boundary data, the truncated singular
value decomposition method (TSVD) has been found to be
more efficient than Gaussian elimination.

In this work, the sound field generated by a 3D sound
source inside a 3D enclosure is modeled using the MFS.
The model developed allows the boundaries to be rigid or
absorbent and the final system of equations is solved using
Gaussian elimination.

The problem is first formulated, the results are then
validated using the image source method, and finally an
application is presented.

2. Problem formulation

The pressure amplitude generated by a 3D source inside
an air-filled 3D enclosed space is calculated by the MFS in
the frequency domain (o). The response inside the domain
is found as a linear combination of fundamental solutions
for the governing equation. Thus, the scattered pressure (p)

wave field is written as

p ¼
XN

s¼1

½asGðx;xs;oÞ�. (1)

These solutions represent the sound field generated by a
set of N virtual sources with amplitude as, placed outside
the domain on a fictitious boundary in order to avoid
singularities. G(x, xs,o) is the 3D Green’s function for
pressure, for a receiver placed at x with co-ordinates
(x, y, z), generated by pressure sources located at xs with
co-ordinates (xs, ys, zs).
The 3D Green’s function for pressure is well known

Gðx; xs;oÞ ¼
e�iðo=cÞr

r
, (2)

where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xsÞ

2
þ ðy� ysÞ

2
þ ðz� zsÞ

2
q

, c is the sound
wave velocity and i ¼

ffiffiffiffiffiffiffi
�1
p

. The coefficients as are
obtained by imposing the required boundary conditions
at M collocation points (xk, yk, zk) along the boundary. A
system of M equations by N unknowns is then obtained.
In this work, an equal number of collocation points
and sources was considered, leading to a system M�M.
The resulting linear system was solved by Gaussian
elimination [20].
For rigid enclosures, null velocities (incident velocity

plus reflected velocity) are ascribed to the boundary. The
Green’s function for velocities is then given by

Hðxs;xk;o; nÞ ¼ �
1

iro
qGðx;xs;oÞ

qr

qr

qn
, (3)

where r is the air density and n is the unit outward normal
at the collocation point (xk, yk, zk). When the room’s
coating material is absorbent the governing equation is
given by

Gðxs;xk;oÞ þ
_

ZHðxs; xk;o; nÞ ¼ 0, (4)

where
_

Z is the material impedance given by the ratio
between the pressure and velocity.
The material impedance can be expressed using the

absorption coefficient a considering that pr ¼ Rpinc, nr ¼

�Rninc, R ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� a
p

, where R is the reflection coefficient, pr

the reflected pressure, pinc the incident pressure, nr the
reflected velocity, and ninc is the incident velocity. In fact,

_

Z

can be expressed as

_

Z ¼
pinc þ Rpinc

vinc þ Rvinc

¼
pinc

vinc

1þ
ffiffiffiffiffiffiffiffiffiffiffi
1� a
p

1�
ffiffiffiffiffiffiffiffiffiffiffi
1� a
p

 !
, (5)

where pinc ¼ (e�i(o/c)r/r) and ninc ¼ �([�i(o/c)r�1]e
�i(o/c)r)/

iror2)(qr/qn).
In the case of an enclosure of arbitrary geometry built

over a horizontal rigid base, the placement of collocation
points at this surface can be avoided if an appropriate
Green’s function for a half-space is used:

Gðx; xk;oÞ ¼
e�iðo=cÞr

r
þ

e�iðo=cÞr0

r0
(6)
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