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a b s t r a c t

The paper is an application of boundary integral equations to the problem of a crack located on the

bimaterial interface under time-harmonic loading. A system of linear algebraic equations is derived for

solving the problem numerically. The distributions of the displacements and tractions at the bimaterial

interface are obtained and analysed for the case of a penny-shaped crack under normal tension-

compression wave. The dynamic stress intensity factors (normal and shear modes) are also computed.

The results are compared with those obtained for the static case.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Modern design and service conditions require a continued
increase in the magnitude, velocity and frequency of the loading
of various mechanical systems. The level of safety requirements
increases consequently because the cost of unpredictable fracture
is enormously high. Unfortunately, it is not possible to fully
eliminate the appearance of different micro-defects in structural
materials due to the processing flaws, fatigue, consequences of an
impact, etc. In particular, localized damage in the form of
distributed cracks/delaminations often occurs at the bonding
surfaces between two dissimilar materials. The presence of cracks
and delaminations considerably decreases the strength and the
lifetime of structures as well as significantly increases the cost of
exploitation. Cracks act as local stress concentrators, which can
lead to a sudden fracture under unexpectedly small loading and,
apart from the economic value, put human health and life at risk.
Hence, the elastodynamic response of intra- and inter-component
cracks to an elastic wave is a topic of long-standing interest in the
study of wave propagation [1–5].

A considerable body of work is devoted to the solution of two-
and three-dimensional fracture mechanics problems for cracked
homogeneous solids under dynamic loading; see, for example,
[1–9]. It is only possible to solve these problems using advanced
numerical methods, since the analytical solutions are limited to a
relatively small number of idealized model problems correspond-
ing to the very special geometrical configurations and loading
conditions. Among many numerical methods, which are available

in the literature, the boundary integral equations method provides
a powerful and efficient tool for the problems of wave propagation
in cracked solids, due to its semi-analytical nature, reduced
problem dimension, high accuracy and easy processing of input
and output data [3–5,8,10–15].

One of the major difficulties encountered when using the
boundary integral equations in elastodynamic problems is the
evaluation of divergent integrals with different types of singular-
ity. The order of the singularity and the structure of integrals
depend on the type of weight functions. These integrals are often
hyper-singular and should be treated in the sense of the
Hadamard finite part [16–18].

Elastodynamic investigation of interface cracks received con-
siderably less attention than the case of cracks in homogeneous
materials due to the substantial complications, which arise in
numerical solution of such problems. The recent papers [19,20]
derive the system of boundary integral equations for the three-
dimensional problem for an interface crack between two dissim-
ilar elastic materials under general dynamic loading. For the case
of harmonic loading, the required integral kernels, which are
fundamental solutions of the elastodynamics in the frequency
domain, were given in [21]. In Refs. [20–22], the distributions of
displacements and tractions at the bonding interface and the
crack surface were computed for the case of a penny-shaped crack
under normally incident tension-compression wave for several
typical material properties of half-spaces. It was shown that with
decreasing frequency of the loading the dynamic solution tends to
the static one, and the obtained numerical results are in a very
good agreement with the analytical static solution [23,24] and
numerical static solution [18].

In this paper for the first time in the case for an interface crack
under harmonic loading, the dynamic stress intensity factors
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(opening and transverse shear modes) are computed and their
distribution with respect to the dimensionless wave number is
analysed. The collocation method with a piecewise-constant
approximation is used for solving the problem numerically. The
resulting system of linear algebraic equations is given and its
structure is analysed. It is shown that the displacements and
tractions at the bonding interface decrease gradually with
increase in the distance to the crack, i.e. the Sommerfeld
radiation-type condition is satisfied at the infinity.

2. Methodology

Let us consider a planar crack located at the bimaterial
interface. For this purpose, we investigate an unbounded three-
dimensional elastic solid, which consists of two homogeneous
isotropic half-spaces. The interface between the half-spaces, G*,
acts as the boundary G(1) for the upper half-space, and the
boundary G(2) for the lower half-space. The planes G(1) and G(2)

differ by the opposite orientation of their outer normal vectors.
The material is undergoing a harmonic loading with the frequency
o ¼ 2p/T.

We denote the vector of displacements u(m)(x,t) and the
traction vector p(m)(x,t). Henceforth, superscript (1) refers to the
upper half-space and superscript (2) refers to the lower half-
space. We assume that the surface G(m) (m ¼ 1,2) consist of the
infinite part G(m)� and the finite part G(m)cr. The crack surface Gcr

is formed by two faces, G(1)cr and G(2)cr, i.e. GðmÞ ¼ GðmÞ;n [ GðmÞ;cr

and Gcr
¼ Gð1Þcr

[ Gð2Þcr (see Fig. 1).
The conditions of continuity for displacements and stresses are

satisfied at the interface Gn
¼ Gð1Þ \ Gð2Þ. In the absence of body

forces, the stress–strain state of both domains is defined by the
Lamé dynamic equations of the linear elasticity, and the
Sommerfeld radiation-type condition is imposed at infinity on
the vector of displacements.

The procedure for deriving the system of boundary integral
equations is loosely based on the original ideas put forward in
[11–14]. The detailed description is given by the authors in
[19,20]. It was shown that using the Somigliana dynamic identity,
the following system of boundary integral equations for displace-
ments and tractions at the interface and the crack faces can be
obtained:
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where gðmÞðx; tÞ;x 2 GðmÞcr
ðm ¼ 1;2Þ are known traction vectors at

the crack opposite faces, which are determined by the external load.
For the case of harmonic loading, which is considered in the

paper, the components of the stress–strain state can be expressed
as harmonic functions:

pðx; tÞ ¼ RefpðxÞeiotg ¼ pcðxÞ cosðotÞ þ psðxÞ sinðotÞ, (4)

uðx; tÞ ¼ RefuðxÞeiotg ¼ ucðxÞ cosðotÞ þ usðxÞ sinðotÞ, (5)
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Then the system of boundary integral equations (1)–(3) can be
re-written in the following form, which does not contain the time
integrals:
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Fig. 1. Interface crack between two dissimilar half-spaces.
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