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a b s t r a c t

Differential quadrature Trefftz method (DQTM) is developed to deal with plate problems defined in

irregular domains. DQTM divides the solution into two parts, a particular solution for inhomogeneous

biharmonic equation and the general solution for homogeneous biharmonic equation. For the former,

differential quadrature method based on the interpolation of the highest derivative (DQIHD) is involved.

For the latter, polynomial basis functions are adopted instead of fundamental solutions. We will show

that DQTM not only keeps the advantages of traditional differential quadrature method (DQM), high

efficiency and accuracy, but also has no difficulties to deal with geometrically irregular domains.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Though bending problems of plates have been extensively
studied, it is still very difficult to deal with arbitrary shapes
and boundary conditions. In this paper, we try to offer a
general method based on differential quadrature Trefftz
method (DQTM). It combines differential quadrature method
(DQM) [1–3] and Trefftz method [4–7], and the essence is to
divide the solution into a particular solution for inhomogeneous
biharmonic equation and the general solution for homogeneous
biharmonic equation. For irregular plates, a large enough
rectangular domain containing the original one is set as
the computational domain. For a particular solution without
boundary conditions, DQM based on the interpolation of
the highest derivative (DQIHD) [8] is used, which is different
from the traditional DQM. Because it does not involve the
numerical differentiation process, the accuracy can be obviously
heightened. For the general solution, we will express it by the
linear combination of polynomial basis functions instead of
fundamental solutions, so that there is no singularity [9,10]. Then
the collocation method is used to determine the unknown
coefficients.

On the one hand, this method can keep the advantages of
DQM, such as high accuracy, efficiency and good convergence [3].
On the other hand, it is especially efficient for the plates
whose shapes are irregular or whose boundary conditions are
complex.

2. Methods

2.1. The linear bending problems of thin plates

According to Kirchhoff’s three assumptions [11], the governing
equation is a biharmonic equation. Here consider the standard
form as follows:

D2u ¼ f , (2.1)

where f ¼ q(x, y)/D, q(x, y) is a known transverse load function, D

is the bending stiffness, u is the deflection w to solve. The
boundary conditions in this paper involve clamped edges, simple
supported edges and free edges, denoted by G1, G2 and G3,
respectively. So the boundary of O is G ¼ qO ¼ G1+G2+G3. Here
the boundary conditions are expressed as follows:

u ¼ g1; on G1 [ G2;

Cu ¼ g2; on G1;

Su ¼ g3; on G2 [ G3;

Fu ¼ g4; on G3;

8>>>><
>>>>:

(2.2)

where g1, g2, g3 and g4 are known functions and generally equal to
0. C, S and F are three operators defined as follows:

C ¼ l
q
qx
þm

q
qy

,

S ¼ ðl2 þ nm2Þ
q2

qx2
þ ðnl2 þm2Þ

q2

qy2
þ ð2� nÞlm q2

qxqy
,

F ¼ � ½ð1� nÞm2 þ 1�l
q3

qx3
þ ð1� nÞð2l2 �m2 � 1Þm

q3

qx2qy

þ ð1� nÞð2m2 � l2 � 1Þl
q3

qxqy2
� ½ð1� nÞl2 þ 1�m

q3

qy3
.
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It is easy to find that they are only related to the Poisson ratio of
the plate n and l ¼ cos(n, x), m ¼ sin(n, x), where n is the outward
normal direction.

2.2. DQIHD

For the boundary value problems (2.1) and (2.2), DQTM
decomposes the solution as

u ¼ up þ uh, (2.3)

where up is a particular solution for (2.1) without considering the
boundary conditions, so it is not unique. uh is the general solution
for homogeneous biharmonic equation:

D2u ¼ 0. (2.4)

For a particular solution for (2.1), DQIHD is adopted here. It is
introduced briefly in the following part and detailed in Ref. [8].

The essence of the traditional DQM is that the partial
derivative of a function with respect to a variable can be
approximated by a weighed sum of functional values at all
discrete points in that direction. And the weighing coefficients
depend only on the grid space. But DQIHD tries to use the values
of the partial derivative at discrete points to express the functional
values. Take the four-order ordinary differential equation for
example. Firstly, u(4) can be approximated by the interpolation of
the values at discrete grid points {xi} as

uð4ÞðxÞ ¼
Xn

j¼1

ljðxÞu
ð4ÞðxjÞ, (2.5)

where lj(x) is the basis function of Lagrange interpolation on the
discrete points {xi}. In this paper, we choose Gauss–Chebyshev
points, expressed as

xi ¼ cos
2i� 1

2n
p

� �
; 1pipn. (2.6)

Next, by integration we have

uð3Þ ¼

Z x

0
uð4Þds ¼

Xn

j¼1

aju
ð4ÞðxjÞ þ uð3Þð0Þ, (2.7)

where aj ¼
R

0
xlj ds. Repeat this process until the order is 0.

Denote

A ¼ ðaijÞ; B ¼ ðbijÞ; C ¼ ðcijÞ; D ¼ ðdijÞ,

aij ¼ ajðxiÞ; bij ¼ bjðxiÞ ¼

Z xi

0
ajðsÞds,

cij ¼ cjðxiÞ ¼

Z xi

0
bjðsÞds; dij ¼ djðxiÞ ¼

Z xi

0
cjðsÞds.

Then the process can be expressed as

Uð4Þ ¼ E U;Uð3Þ ¼ A U;Uð2Þ ¼ B U;Uð1Þ ¼ C U;U ¼ D U , (2.8)

where

U ¼ ½uð0Þ uð1Þð0Þ uð2Þð0Þ uð3Þð0Þ uð4Þðx1Þ � � � uð4ÞðxnÞ �
T

E ¼ ½0;0;0;0; E�; A ¼ ½0;0;0; I;A�; B ¼ ½0;0; I;X;B�,

C ¼ ½0; I;X;X2=2;C�; D ¼ ½I;X;X2=2;X3=6;D�, (2.9)

where E is an identity matrix, the terms like u(p)(0) (0ppp3) are
the values or derivatives of u on the boundary points, I, X, X2/2, X3/6
are column vectors making up of the values of functions 1, x, x2/2,
x3/6 at {xi}. Notice that matrices with underlines are no longer
square.

Extend to two-dimensional cases. Since the biharmonic
operator contains three terms: q4/qx4, q4/qx2qy2 and q4/qy4 and
the highest partial derivatives along x and y are both of four
order, all of them can be expressed by ðupÞx4y4 via numerical

integration instead. Here U is denoted as the value matrix of
ðupÞx4y4 and called the highest derivative of Up. U can be expressed
as follows:

U ¼

uð0;0Þ u0;1ð0;0Þ u0;2ð0;0Þ u0;3ð0;0Þ u0;4ð0; y1Þ � � � u0;4ð0; ynÞ

u1;0ð0;0Þ u1;1ð0;0Þ u1;2ð0;0Þ u1;3ð0;0Þ u1;4ð0; y1Þ � � � u1;4ð0; ynÞ

u2;0ð0;0Þ u2;1ð0;0Þ u2;2ð0;0Þ u2;3ð0;0Þ u2;4ð0; y1Þ � � � u2;4ð0; ynÞ

u3;0ð0;0Þ u3;1ð0;0Þ u3;2ð0;0Þ u3;3ð0;0Þ u3;4ð0; y1Þ � � � u3;4ð0; ynÞ

u4;0ðx1;0Þ u4;1ðx1;0Þ u4;2ðx1;0Þ u4;3ðx1;0Þ u4;4ðx1; y1Þ � � � u4;4ðx1; ynÞ

..

. ..
. ..

. ..
. ..

. . .
. ..

.

u4;0ðxn;0Þ u4;1ðxn;0Þ u4;2ðxn;0Þ u4;3ðxn;0Þ u4;4ðxn; y1Þ � � � u4;4ðxn; ynÞ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

,

(2.10)

where us,t(x, y) (0ps, tp4) is short for uxsyt ðx; yÞ. Generally, the
boundary valuesuxsyt ðxi;0Þ anduxsyt ð0; yjÞ are given via the bound-
ary conditions. But in this paper, they are also unknowns.

DQIHD uses the equations as follows for a particular solution:

Ex U DT
y þ 2Bx U BT

y þ Dx U ET
y ¼ F . (2.11)

It can be transformed into

ðDy � Ex þ 2By � Bx þ Ey � DxÞVecðUÞ ¼ VecðFÞ, (2.12)

where � is Kronecker-product, Vec( � ) means to reset the
matrix as a column vector. (2.12) may have many solutions.
The least-square method is used here to get one and accord-
ing to the relationship between U and Uxsyt , all derivatives are
solved.

Compared with the traditional DQM, DQIHD involves
no numerical differentiation, which is very sensitive to even a
small level of errors. It is not only for particular solutions. For
bending moments and shearing forces which also involve
derivatives, the process is almost the same. If the traditional
DQM is chosen for particular solutions, numerical differentiation
will be unavoidable, because we have to let C, S, F act on the
particular solution up. So DQIHD can avoid numerical differentia-
tion in two places.

2.3. General solution for homogeneous biharmonic equation

The general solution uh can be expressed by the linear
combination of a series of basis functions fu�kgk¼1;2:::, i.e.

uh ¼
X

k

bku�k. (2.13)

And general solutions of bending moments and shearing forces
can be expressed by linear combinations of relevant derivatives of
basis functions, with the same coefficients.

There can be different basis functions. Usually fundamental
solutions are adopted. But here we choose the polynomial basis
functions, because they have no singularity. They can be obtained
similarly according to the following theorem.

Theorem 4.1. [10] A biharmonic function u(x, y) in a plane simply

connected domain O certainly can be expressed as

uðx; yÞ ¼ Re½z̄jðzÞ þ cðzÞ�, (2.14)

where j(z) and c(z) are two analytic function, z ¼ x+yi; conversely,

for two arbitrary analytic functions j(z) and c(z) in O, the function

u(x, y) given by (2.14) is certainly a biharmonic function.

Let O be a plane bounded domain. In order to obtain a series of
simple biharmonic functions, we can first let j(z) and c(z) as
polynomials of z, then substitute them into (2.14) and take the real
parts. Distinctly, all of the harmonic functions are also biharmonic
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