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a  b  s  t  r  a  c  t

In this  paper,  we  present  methods  to determine  multipole  coefficients  for describing  the potential  in
toroidal  ion  trap  mass  analysers.  Three  different  methods  have  been  presented  to compute  the  toroidal
multipole  coefficients.  The  first method  uses  at least  square  fit  (LS)  and  is useful  when  we have  ability
to  compute  potential  at  a set  of  points  in  the  trapping  region.  In  the  second  method  we use  the  Discrete
Fourier  Transform  (DFT)  of  potentials  on  a circle  in  the  trapping  region.  The  third  method  uses  surface
charge  distribution  obtained  from  the  Boundary  Element  Method  (BEM)  to  compute  these  coefficients.
Using  these  multipole  coefficients  we have  presented  (1)  equations  of  ion  motion  in  toroidal  ion traps,
(2)  the  Mathieu  parameters  in terms  of multipole  coefficients  and  (3) the  secular  frequency  of ion  motion
in  these  traps.  It has  been  shown  that the  secular  frequency  obtained  from  our method  has  a good  match
with that  obtained  from  numerical  trajectory  simulation.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In this paper, we discuss three different methods to deter-
mine multipole coefficients suitable for describing the potential in
toroidal ion trap mass analysers.

A toroidal ion trap mass analyser can be viewed as a linear ion
trap curved around and connected at the ends or as a cross sec-
tion of a quadrupole ion trap (QIT) rotated on edge to form the
toroid [5,13]. This produces a circular ion trapping region [4]. These
are axi-symmetric devices. In the literature the toroidal ion trap
was originally presented as a storage device [2,3]. Later, the use of
toroidal ion traps as mass analysers was demonstrated by Bier and
Syka [4] and Lammert et al. [5]. These analysers have large trapping
region and less space charge effect in comparison to quadrupole
ion trap mass analysers in which trapping occurs at a point [4].
These analysers are now available commercially in a miniaturized
structure [36].

Toroidal ion trap mass analysers have received the attention
of several researchers [6–15]. These studies include design and
simplification of toroidal ion trap mass analysers [5–10] and minia-
turization of toroidal mass analysers [6,11–13]. Another direction
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to this investigation were simulation studies of ion trajectories in
toroidal ion trap mass analysers [7,8].

Efforts to optimize the performance of toroidal ion trap mass
analysers require the evaluation of potentials and fields within
the device. Lammert et al. [5] have made toroidal ion trap mass
analyser by optimizing the electric field obtained numerically.
Taylor and Austin [10] have designed a simplified and optimized
toroidal ion trap geometry by setting desired percentage of mul-
tipole coefficients. These multipole coefficients are obtained by
polynomial fitting to the numerically obtained potential along its
axis. This is same as multipole expansion in axially symmetric
ion trap mass analysers such as QIT, in which potential around
trapping point is expressed in series form of Legendre polynomials
[30,16,18]. Higgs and Austin [7] have taken a polynomial fit to
the numerically obtained potential in the trapping region of the
toroidal ion trap and have used this polynomial to compute the
trajectory of ion motion.

Some shortcomings of these approaches have been highlighted
in the literature. For instance Higgs and Austin [7] pointed out that
there is a lack of understanding of higher order field contributions
and their effects on ion motion in toroidal ion traps. Further, Higgs
et al. [8] suggested that a solution based on a toroidal coordinate
system may  be more appropriate and useful. It is at this point that
our study hopes to contribute. We will take up for investigation the
determination of multipole coefficients in the toroidal coordinate
system. Such studies are not available in the mass spectrometry
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Fig. 1. Schematic view of HypTorTrap obtained from a quadrupole ion trap rotated on edge to form the toroid. (a) Three dimensional view and (b) cross section in xz-plane.

literature and to our knowledge it is not readily available in the
mathematical literature too.

Three approaches have been adopted in this study for three dif-
ferent circumstances. In the first method, a least square fit is used.
This method is useful when we have ability to compute potential
at a set of points in the trapping region. We  call this method as
LS method in this paper. This method is analogous to the method
used to compute multipole coefficients for cylindrical ion traps
(CIT) by Wu et al. [18], in which a least square fit of potential with
polynomial has been used. In the second method, we use Discrete
Fourier Transform (DFT) of potential on a circle (having a particu-
lar property which will be discussed later) in the trapping region.
This method has greater accuracy with less computational effort,
in comparison to the LS method. We  call this method as the DFT
method in our discussion. This method is analogous to computa-
tion of Laurent coefficients using the DFT [27]. The third method
is used when the surface charge distribution has been determined
using the boundary element method. We  call this method as the
Surface Charge BEM (SC-BEM) method. This method is analogous
to the method used by Beaty [30] to compute multipole coefficients
for the QIT.

Having obtained toroidal multipole coefficients, the Mathieu
parameters [1] will be shown in terms of these coefficients.
Although the formulae for Mathieu parameters in terms of mul-
tipole coefficients for nonlinear ion traps, such as CIT, have been
presented in the literature [17], similar formulae do not exist for
toroidal ion traps. Having obtained the Mathieu parameters in
terms of toroidal multipole coefficients, we will show how these
can be used to estimate secular frequencies [1] in these traps.

Five separate toroidal trap geometries have been taken up for
investigation. Of these, two are similar to the geometries reported
in the literature, while the other three are chosen to demonstrate
that our method can handle the variety of complexities that may
arise. However, the methods presented in this paper are applicable
to toroidal ion traps in general, and not restricted to the example
geometries discussed here.

Geometries considered in the study are presented in Section 2,
and Section 3 presents the computational methods. Required the-
ory will be discussed in Section 4 and results are presented in
Section 5.

2. Geometries considered

In this section we present five geometries that have been taken
up for investigation.

2.1. The geometry HypTorTrap

The first geometry considered will be referred to as HypTorTrap.
This geometry has four electrodes, each electrode cross section is
hyperbolic. This geometry is similar to the symmetric version of
the geometry considered by Lammert et al. [5]. We  have consid-
ered this for simplicity, although the asymmetric version that they
have investigated has better performance than the symmetric one.
Fig. 1(a) shows its three dimensional view. This trap is obtained
from QIT rotated on edge to form the toroid. Its cross section in xz-
plane is shown in Fig. 1(b). The distance R0, from origin to the mid
point between ring electrodes on x-axis is 20 mm.  The half distance
r0, between ring electrodes is taken as 10 mm and the half distance
z0, between endcap electrodes is taken as 7.07 mm.  The truncation
of ring electrodes as well as endcap electrodes is done such that the
trap has top bottom symmetry. The truncation of endcap electrodes
are done such that the least distance between z-axis and truncation
point is r1, which is taken as 8.24 mm.  The ring electrodes are trun-
cated at height z1 from radial plane (or xy-plane) and is taken as
8.31 mm.

The parametric equations of the hyperbolic surfaces are given
as follows: INNER RING: r(t) = R0 − r0 cosh(t) and z(t) = z0 sinh(t);
OUTER RING: r(t) = R0 + r0 cosh(t) and z(t) = z0 sinh(t); ENDCAP1:
r(t) = R0 + r0 sinh(t) and z(t) = z0 cosh(t); ENDCAP2: r(t) = R0 +
r0 sinh(t) and z(t) =− z0 cosh(t). In all cases t changes from −1 to 1.

2.2. The geometry CylTorTrap

The second geometry considered will be referred to as CylTor-
Trap. It is obtained by replacing hyperbolic electrodes of the trap
shown in Fig. 1(a), with flat electrodes. This too, like HypTorTrap
discussed above, is a symmetric version of the trap reported by
Lammert et al. [10]. Fig. 2(a) shows its three dimensional view.
The electrodes are obtained by replacing hyperbolic surfaces of ring
electrodes shown in Fig. 1(a) with cylinders and endcap electrodes
with annuli. Its cross section in xz-plane is shown in Fig. 2(b). The
distance R0, from origin to the mid  point between concentric cylin-
ders on x-axis is 20 mm.  The half distance r0, between concentric
cylinders is taken as 10 mm and the half distance z0, between end-
cap electrodes is taken as 10 mm.  The half height z1, of cylinders
forming ring electrodes is taken as 6 mm.  The thickness d, of cylin-
ders forming ring electrodes is taken as 4 mm.  The hole radius r1, of
annuli forming endcap electrodes is taken as 6 mm.  The thickness
d, of annuli forming endcap electrodes is taken as 4 mm.
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