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Integral equation formulation for thin shells—revisited
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Abstract

While the matter of solving problems in fracture mechanics with boundary integral equations (BIEs) has received considerable

attention, the ‘‘conjugate’’ problem of thin shells has received less. The latter problem is revisited in this work. The attempt here is to

clarify certain issues that were not fully addressed in earlier publications. In particular, the issue of consistency of the relevant regularized

boundary integral equations, when collocated at corresponding points on two sides of a thin shell, is addressed carefully. Some comments

on the corresponding BIE formulation for fracture mechanics problems are made at the end of the paper in order to compare and

contrast these two problems.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of a crack in an (infinite or finite) linear
elastic medium has received considerable attention in the
boundary integral equation (BIE) literature (please see [1]
and the references therein). The failure of the standard BIE
in the limit of an infinitely thin crack is well known; as is
the idea of employing the hypersingular BIE (HBIE) to
solve this problem. The conjugate problem of a thin shell
has been solved with an elasticity BIE approach by Liu [2].
Certain issues related to this formulation have been
discussed in [3] (see, also, [1]).

The formulation presented in [3] is revisited in this paper.
Regularized displacement BIEs, collocated at points xþ (on
the upper) and x� (on the lower) surfaces of a thin shell,
are carefully derived. It is shown that consistency of these
equations requires, as expected, that the displacement must
be continuous across a thin shell. Similarly, one concludes
from the consistency requirement of the corresponding
regularized stress BIEs that the stress must also be
continuous across a shell. Of course, such continuity in
these fields is to be expected. It is interesting, however, to

demonstrate that consistency of the relevant regularized
BIEs demands continuity of the relevant fields.
Finally, it is shown that while these BIEs in the limit of a

thin crack are well posed and solvable (this is well known),
those for thin shells are not! Fortunately, however, problems
involving thin shells of finite thickness have been successfully
solved numerically by Liu [2] using the displacement BIE in
its standard form—i.e. by modeling the displacements
separately on the two shell surfaces rather than just their
difference, together with careful evaluation of the nearly
singular integrals that arise in his formulation.

2. Mathematical preliminaries

Formulae for integral of the traction kernel T over a
boundary element, and for the solid angle subtended by a
boundary element at a point, are very important for the
rest of this paper. Hence, these issues are addressed first.
The standard BIEs for three-dimensional (3-D) linear

elasticity involve the traction kernel. This kernel has the
form [1, Eq. (1.19)]:
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In the above rðx; yÞ ¼ y� x (with x a source and y a field
point), r ¼ jrj, r;k ¼ qr=qyk ¼ ðyk � xkÞ=r, n is the unit
outward normal to the boundary at y, d is the Kronecker
delta and n is the Poisson’s ratio of the elastic material.

Inside approach: The following finite part integrals (FP
integrals in the sense of Mukherjee [4]) of the kernel T
(see Fig. 1 below and (3.26) in [1]) are noted below:

Tikðx; yÞdSðyÞ ¼ �g
ðaÞ
ik ðxÞ �

OðIÞðŜ
þ
;xÞ

4p
dik, (2)

Tikðx; yÞdSðyÞ ¼ �g
ðcÞ
ik ðxÞ �

OðIÞðŜ
�
;xÞ

4p
dik, (3)

where

g
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In (2)–(4), x is a boundary point that can be xþ or x�

(see Fig. 1). The surface element Ŝ
þ
� Sþ is a neighbor-

hood of xþ 2 Sþ. It is noted that, strictly speaking, the
integral on the left-hand side of (2) is strongly singular only
for x ¼ xþ and nearly strongly singular for x ¼ x�.
Therefore, its FP designation is strictly valid only in the
limit of a very thin shell. (A similar comment also applies
to (3).)

Also, e is the alternating tensor, zk ¼ yk � xk, and the
line integrals over L̂

þ
are evaluated in the anti-clockwise

sense when viewed from above. The expression for g
ðcÞ
ik is

the same as that on the right-hand side of (4), except that
the integral is now evaluated over L̂

�
in the clockwise sense

when viewed from above. In the case of a very thin shell
(shell thickness h! 0), gðaÞðxÞ � �gðcÞðxÞ.

The superscripts ðIÞ in (2) and (3) indicate approach to
xþ from a point n inside the shell (see Fig. 1). The solid
angle OðIÞ, subtended by Ŝ

þ
and Ŝ

�
at xþ, are given by (see

Fig. 2 and [5])

OðIÞðŜ
þ
;xþÞ ¼

rðxþ; yÞ � nðyÞ

r3ðxþ; yÞ
dSðyÞ

¼

Z 2p

0

½1� cosðcðyÞÞ�dy, ð5Þ

OðIÞðŜ
�
; x�Þ ¼

rðx�; yÞ � nðyÞ

r3ðx�; yÞ
dSðyÞ

¼

Z 2p

0

½1þ cosðcðyÞÞ�dy. ð6Þ

The solid angle O was first expressed in this way by Liu
[2]. A Cartesian coordinate system OXYZ is chosen with
the origin at the source point (inside the shell) such that the
positive Z-axis intersects the appropriate surface (Ŝ

þ
for

(5) and Ŝ
�
for (6)). In Fig. 2, c is the angle between the

positive Z-axis and rðxþ; yÞ with y 2 L̂
þ
, and y is the angle

between the X -axis and the projection of rðxþ; yÞ in the
X–Y plane (see Figs. 5 and 6 in [2]).
It is noted here that for a very thin shell xþ � x�, so

that, one has OðIÞðŜ
þ
;xþÞ � OðIÞðŜ

þ
; x�Þ and

OðIÞðŜ
�
; xþÞ � OðIÞðŜ

�
;x�Þ.

Outside approach: The situation is very interesting if a
boundary point x is approached by a point n outside the
shell. The equations corresponding to (2) and (3) now are

Tikðx; yÞdSðyÞ ¼ �g
ðaÞ
ik ðxÞ �

OðOÞðŜ
þ
;xÞ

4p
dik, (7)

Tikðx; yÞdSðyÞ ¼ �g
ðcÞ
ik ðxÞ �

OðOÞðŜ
�
;xÞ

4p
dik. (8)

It is noted that the value of the tensor g is independent of
how the point x is approached. The value of the solid
angle, however, does depend on both the direction of the
normal to the surface as well as the direction of approach
[5]. For a very thin shell, one has (see Fig. 2)

OðOÞðŜ
þ
; xþÞ ¼ �

Z 2p

0

½1þ cosðcðyÞÞ�dy ¼ �OðOÞðŜ
�
;xþÞ,

(9)

OðOÞðŜ
þ
; x�Þ ¼

Z 2p

0

½1� cosðcðyÞÞ�dy ¼ �OðOÞðŜ
�
;x�Þ.

(10)

An interesting observation: In this discussion, x is a
boundary point which can be either xþ or x� (see Fig. 1).
Further, very thin shells are considered here.
It is noted that (5), (6) and the last two lines of the

paragraph ‘‘Inside approach’’ in Section 2 imply that

OðIÞðŜ
þ
; xÞi� OðIÞðŜ

�
;xÞ. (11)
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Fig. 1. Geometry of a thin shell. The unit normal point away from the

shell.
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Fig. 2. Surface element Ŝ
þ
with bounding contour L̂

þ
.
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