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a b s t r a c t

This paper presents a dual reciprocity boundary element solution method for the unsteady

Navier–Stokes equations in two-dimensional incompressible flow, where a fractional step algorithm

is utilized for the time advancement. A fully explicit, second-order, Adams–Bashforth scheme is used for

the nonlinear convective terms. We performed numerical tests for two examples: the Taylor–Green

vortex and the lid-driven square cavity flow for Reynolds numbers up to 400. The results in the former

case are compared to the analytical solution, and in the latter to numerical results available in the

literature. Overall the agreement is excellent demonstrating the applicability and accuracy of the

fractional step, dual reciprocity boundary element solution formulations to the Navier–Stokes equations

for incompressible flows.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The overall accuracy of many grid-based approaches in
computational fluid dynamics (CFD), such as the finite element
method (FEM), finite difference method (FDM), or finite volume
method (FVM), depends to a large extend, on the quality of the
computational mesh. In complex geometries the generation of
high-quality grids is difficult and usually has an adverse impact on
the accuracy and stability of the computations. An attractive
alternative to classical grid-based approaches is the family of
boundary element methods (BEM) [1]. BEM greatly simplify the
grid generation procedure, since the problem dimensions are
reduced, and only the boundary is discretized. In the past, BEM
have been extensively used in linear and nonlinear heat transfer
problems, where today have reached a stage of maturity and are
routinely used in the field [2–4].

In the case of fluid flow problems, however, progress has not
been as rapid and most efforts have been concentrated in steady
flows. Grigorev [5], for example, proposed the BEM formulation
using the SIMPLE algorithm [6] to solve the Navier–Stokes
equations for steady, incompressible, laminar flows. Since the
resulting boundary integral equations are nonlinear, an iterative
scheme with under-relaxation was utilized. Rahaim and Kassab
[7] developed the dual reciprocity boundary element method
(DRBEM) based on an on iterative pressure correction scheme.

They demonstrated the accuracy of the approach in steady,
viscous, incompressible flow in a channel for several Reynolds
numbers. Sarler and Kuhn [8] developed a DRBEM formulation
based on the SIMPLE algorithm, which utilized augmented thin-
plate, spline functions as the global interpolation functions.
Camacho and Barbosa [9] applied a similar scheme to convective
heat transfer problems. The limitations of the SIMPLE algorithm,
however, in unsteady flow problems are well established, and
fractional step methods are much more popular in the CFD
community [10–14]. Eldho and Young [15] proposed an alter-
native DRBEM approach, which is based on the velocity–vorticity
formulation for steady, incompressible flows. The Poisson and
vorticity transport equations in the resulting scheme were solved
iteratively using DRBEM and combined to determine the velocity
and vorticity vectors. The accuracy of the method was demon-
strated for lid-driven cavity at low Reynolds numbers.

In the present paper we have developed a BEM for the
unsteady Navier–Stokes equations, where a fractional step
algorithm is utilized for the time advancement. The overall
approach is based on the classical projection method proposed
by Chorin [16]. A fully explicit, second-order, Adams–Bashforth
scheme is used for the nonlinear convective terms. The boundary-
only discretization, which is the key element of the DRBEM is
preserved by taking the domain integral to the boundary and
removing the need for a complicated domain discretization with
the reciprocity principle [17]. To demonstrate the accuracy and
efficiency of the method we will present two examples: the
Taylor–Green vortex and the lid-driven square cavity flow. The
results in the former case are compared to the analytical solution,
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and in the latter to numerical results available in the literature. In
the next sections the overall formulation and solution method are
discussed in detail. The results and conclusions will follow.

2. Fractional step method

The dynamics of viscous incompressible flow with constant
density and viscosity are determined by the momentum con-
servation equation,

r @V

@t
þ rV � rV ¼ �rP þ mr2V, (1)

together with mass conservation equation,

r � V ¼ 0, (2)

where V is velocity vector, t is time, r is the fluid density, m is the
viscosity and P is the pressure. In the framework of a fractional
step method, a predictor step is first taken, and an approximate
velocity field (denoted by tilde from now on), which is not
divergence free is obtained for the time increment, Dt, between
time-step m and m+1:

r Ṽ
ðmþ1Þ

� VðmÞ

Dt
¼ �rV � rV þ mr2V. (3)

Then the predicted velocity is projected into a divergence free
field using,

rVðmþ1Þ
� Ṽ

ðmþ1Þ

Dt
¼ �rp, (4)

which can be written as

Vðmþ1Þ
¼ Ṽ

ðmþ1Þ
�
Dt

r rp, (5)

where the pressure, p, is a pseudo-pressure and not the actual
pressure. This pseudo-pressure field that is used to perform the
projection can be calculated from Eq. (4) as follows:

r � rVðmþ1Þ
� Ṽ

ðmþ1Þ

Dt

 !
¼ r � ð�rpÞ, (6)

which can be written as

r
2p ¼

r
Dt
r � Ṽ

ðmþ1Þ
. (7)

In unsteady flows, an advantage of the fractional step method
compared conventional SIMPLE based algorithms is the fact
that it uncouples the velocity from the pressure and therefore
sub-iterations within each time-step are not necessary for
convergence.

3. DRBEM formulations for the predicted velocity field

To implement the standard DRBEM procedure the predictor
step given by Eq. (3) can be rewritten as

r
2V ¼

1

m r Ṽ
ðmþ1Þ

� VðmÞ

Dt
þ rV � rV

 !
¼ b, (8)

where the source term of the Poisson-like equation is concisely
expressed by vector b. Let the general variable j to represent the
velocity V and use the variable c( ¼ qj/qn) as its normal
derivative. Then applying the usual boundary element technique
to Eq. (8) based on the use of the fundamental solution of the
Laplace equation j� and its normal derivative c� with the
reciprocity principle (Green’s theorem) [17], a boundary integral

equation in a domain O with boundary G can be deduced to

ciji þ

Z
G
jcndG ¼

Z
G
cjndGþ

Z
O

bjndO. (9)

In the DRBEM, the domain integral is taken to the boundary by
expanding the source term b as its values at each node j using a
set of interpolating functions fj as

bffi
XNþL

j¼1

ajf j, (10)

where N+L is the number of boundary nodes plus internal points,
aj is a set of initially unknown coefficients. The interpolating
functions fj and the particular solutions ĵj are linked so that the
domain integral can be transferred to boundary as

r
2ĵj ¼ f j. (11)

Then by substituting Eq. (11) into Eq. (10) and applying
integration by parts twice for the domain integral term, the dual
reciprocity boundary integral equation can be derived as

ciji þ

Z
G
jcndG�

Z
G
cjndG ¼

XNþL

j¼1

aj ciĵij þ

Z
G
ĵjc

ndG�
Z
G
ĉjjndG

� �
.

(12)

For the numerical solution of the integral Eq. (12), the matrix
form of DRBEM is obtained by using the standard BEM scheme of
boundary discretization with linear elements [5]:

½H�fjg � ½G�fcg ¼
XNþL

j¼1

ajð½H�fĵjg � ½G�fĉjgÞ ¼ ð½H�½F̂� � ½G�½Ĉ�Þfag,

(13)

where [H], [G] represent the influence coefficient matrices
resulting from the discretization process, and ½F̂�, ½Ĉ� denote the
matrices containing the vectors fĵjg, fĈjg for the collocation
points j, respectively. They are the functions of geometry and can
be readily evaluated with the use of quadrature. Here the
expansion coefficients aj can be calculated from the chosen
interpolating function fj as

fag ¼ ½F��1fbg, (14)

where the square matrix [F] is formed by vectors of the
interpolating functions fj. Therefore Eq. (13) becomes

½H�fjg � ½G�fcg ¼ ½S�fbg, (15)

and matrix [S] is given by

½S� ¼ ð½H�½F̂� � ½G�½Ĉ�Þ½F��1. (16)

Since two-dimensional problems are considered in the present
study, the general variable j can be expressed as u for x

component velocity and v for y component velocity. Then
expressions of vector {b} are:

bx ¼
1

m
r
Dt
ðumþ1 � umÞ þ r u

@u

@x
þ v

@u

@y

� �� �
(17)

and

by ¼
1

m
r
Dt
ðvmþ1 � vmÞ þ r u

@v

@x
þ v

@v

@y

� �� �
. (18)

In the time marching procedure, the nonlinear convective terms
in the above equations can be treated implicitly or explicitly. An
explicit, second-order, Adams–Bashforth scheme is employed in
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