ELSEVIER

Contents lists available at ScienceDirect

Journal of Chromatography A

journal homepage: www.elsevier.com/locate/chroma

Short communication

Enantiodifferentiation of whisky and cognac lactones using gas chromatography with different cyclodextrin chiral stationary phases

Hans-Georg Schmarr^{a,b,*}, Maximilian Mathes^a, Kristina Wall^{a,1}, Frank Metzner^{a,2}, Marius Fraefel^{a,c}

- ^a Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Institute for Viticulture and Oenology, Breitenweg 71, D-67435 Neustadt an der Weinstraße, Germany
- ^b University Duisburg-Essen, Faculty for Chemistry, Instrumental Analytical Chemistry, Universitätsstraße 5, D-45141 Essen, Germany
- ^c Mannheim University of Applied Sciences, Faculty of Biotechnology, Paul-Wittsack-Str. 10, D-68163 Mannheim, Germany

ARTICLE INFO

Article history: Received 27 June 2017 Received in revised form 1 August 2017 Accepted 3 August 2017 Available online 5 August 2017

Keywords:
Whisky lactone
Cognac lactone
Gas chromatography
Enantioseparation
Chiral stationary phase
Baker's yeast reduction

ABSTRACT

The chiral lactone 5-butyl-4-methyloxolan-2-one or 5-butyl-4-methyldihydro-2(3H)-furanone, often named whisky lactone, is found in oak wood, then contributing to the appreciated flavor of beverages stored in such wooden barrels. Its next higher homologue is named cognac lactone (5-pentyl-4-methyloxolan-2-one or 5-pentyl-4-methyldihydro-2(3H)-furanone), however is much less known, probably due to its minor concentration level. In order to study the direct enantioseparation of both lactones by gas chromatography on chiral stationary phases, individual enantiomers, particularly for cognac lactone were made available. This was achieved by baker's yeast reduction of synthesized ethyl 3-methyl-4-oxononanoate or, after hydrolysis, of the corresponding 4-ketoacid, that gave access to individual enantiomers of cognac lactone. Good enantioseparation was achieved for both whisky and cognac lactone with high values for the chiral resolution with 6-*O-tert*. butyl dimethylsilyl-2,3-dialylated or 6-*O-tert*. butyl dimethylsilyl-2,3-dialylated or 6-*O-tert*. butyl dimethylsilyl-2,3-diacylated cyclodextrin derivatives as chiral selectors. The influence of the nature and position of derivatization of the cyclodextrin moiety revealed a strong impact on the chiral recognition mechanism, as the investigated alkylated derivatives heptakis-(2,6-di-*O-iso*-pentyl-3-*O*-allyl)- β -cyclodextrin and octakis-(2,3-di-*O*-pentyl-6-*O*-methyl)- γ -cyclodextrin did not provide any or only minor chiral selectivity for the two lactones.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Lactones are highly valued aroma compounds in various fruits and foodstuffs. Due to their chirality, enantioselective analysis and evaluation of the enantiomeric ratio in authentic and commercial foodstuffs has a long tradition in food authenticity studies [1]. In the wine or spirit industry, a common vessel used for fermentation, storage or ageing is the wooden barrel that is often made of oak wood. A well-known aroma compound from oak wood is the so-called whisky lactone (WL;

sometimes also named oak or Quercus lactone), chemically a 3-methyltoctan-4-olide (5-butyl-4-methyloxolan-2-one or 5-butyl-4-methyldihydro-2(3*H*)-furanone). In literature, different numbering systems can be found, eventually leading to some confusion. Here we will use the IUPAC-conform numbering starting at the ether oxygen (Fig. 1). Whisky lactone consists of two diastereomers and four enantiomers, which had been fully characterized by Günther and Mosandl [2]. It is found particularly in alcoholic beverages, such as spirits stored in wooden barrels, as e.g. in brandy or cognac [3]. A concise review by Maga summarizes the occurrence of WL [4]. Its next homologue, the 3-methylnonan-4-olide (5-pentyl-4-methyloxolan-2-one or 5-pentyl-4-methyldihydro-2(3*H*)-furanone, Fig. 1), is often called cognac lactone (CL) as it was identified as a trace-level compound in this beverage after working up more than 450 L of cognac [5].

Since whisky and cognac lactones are volatile compounds, analysis by gas chromatographic methods (GC) is usually the method of choice and often described in literature. In an early paper a (preliminary) assignment of the elution orders of the two diastereomers of

^{*} Corresponding author at: Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Institute for Viticulture and Oenology, Breitenweg 71, D-67435 Neustadt an der Weinstraße. Germany.

E-mail address: hans-georg.schmarr@dlr.rlp.de (H.-G. Schmarr).

 $^{^{\,1}}$ Present address: Landesuntersuchungsamt Koblenz, Blücherstr. 34, D-56073 Koblenz, Germany.

² Present address: SRH Mannheim, Berufliches Trainingszentrum Mannheim, Am Exerzierplatz 2, D-68167 Mannheim, Germany.

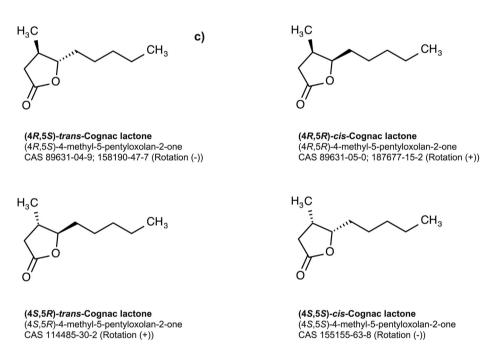


Fig. 1. Structures of whisky lactone (a), cognac lactone (b), and individual enantiomers of cognac lactone (c).

whisky (Quercus) lactones was done by Masuda and Nishimura [6] in such a way that the isomer eluting first in gas liquid partitioning chromatography (GLC) on an achiral UCON HB 2000 stationary phase was assigned to the cis diastereomer. Kepner and co-workers supported this assignment after GLC on polyethylene glycol type stationary phases (Carbowax 20 M and FFAP) and preliminary NMR experiments [7]. In 1981, Masuda and Nishimura then determined the absolute configurations of naturally occurring trans- and ciswhisky lactones to be (3S,4R) and (3S,4S), with carbon number assignments made according to the non-IUPAC numbering system [8]. Triggered by the opposing results from ter Heide et al. [5] they also reinvestigated their earlier assignment of the cis and trans isomers eluting from UCON HB 2000, now with NMR experiments using a paramagnetic chelate (Eu(fod)₃). This experiment finally confirmed the assignment of ter Heide et al. [5]. Other authors later also confirmed this elution order and extended the knowledge about elution orders for various stationary phases, such as e.g. methyl polysiloxanes DB1 [9], methyl phenyl polysiloxanes (SE54, PS255) and Carbowax [2,10]. In all these cases, the trans diastereomer elutes before the cis diastereomer. However, even in recent publications, an erroneous assignment may still occur in literature, as found e.g. in the work of King et al. [11]. Thus, care has to be

taken and this overview on the historical development might be helpful for future researchers.

An early (indirect) enantioselective analysis of WL was achieved by Günther and Mosandl applying a reductive cleavage with LiAlH₄, producing the stereoisomers of 3-methyloctan-1,4-diol, which were then differentiated as their diastereomeric di-esters with (R)-Mosher acid (α -methoxy- α -trifluoromethylphenylacetic acid) and (S)-O-acetyllactic acid, respectively [12]. A direct enantioseparation was later achieved by the same group [13] with hexakis(3-0acetyl-2,6-di-0-pentyl)- α -cyclodextrin as stationary phase in GC, revealing optically pure (3S,4R)-trans and (3S,4S)-cis diastereomers as constituents in oak wood. From other studies it is known that different oak species, e.g. French (Quercus robur and Quercus petrea) and American (Quercus alba) oaks vary in their diastereomeric ratios. The latter is important, since the two isomers also vary in their sensory properties. Günther and Mosandl described the odors of the WL isomers as being reminiscent of coconut; the cis-isomers were woody and earthy, while the trans-isomers resembled celery [2]. Furthermore, odor thresholds also vary amongst the individual diastereomers and even the enantiomers, as determined e.g. by GC-sniff (olfactometric detection) [14], in alcoholic solution [15], or in wine [16]. Interestingly, apart from many publica-

Download English Version:

https://daneshyari.com/en/article/5134884

Download Persian Version:

https://daneshyari.com/article/5134884

<u>Daneshyari.com</u>