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a b s t r a c t

The Grad-Shafranov equation describes the magnetic flux distribution of plasma in an axisymmetric

system such as a tokamak-type nuclear fusion device. This paper presents a scheme to solve the hyper

singular boundary integral equation (HBIE) corresponding to this Grad-Shafranov equation. All hyper

and strong singularities caused by differentials of the complete elliptic integrals have been regularized

up to the level of the Cauchy principal value integral. Test calculations commonly using discontinuous

boundary elements have been made to compare the HBIE solutions with the solutions of the standard

boundary integral equation (SBIE).

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The magnetohydrodynamic (MHD) equilibrium of plasma in an
axisymmetric (r, z) system such as a ‘tokamak’ nuclear fusion
device is described by the Grad-Shafranov equation
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in terms of magnetic flux c and the toroidal component of of the
plasma current jj [1]. The quantity m0 means the permeability in a
vacuum. The boundary element method (BEM) [2] was applied to
solving this equation [3–5]. In this application, the inhomoge-
neous current term m0rjj is expanded into a 2-D polynomial
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The domain integral caused by m0rjj is transformed into an
equivalent boundary one, using a particular solution j(l, m)

corresponding to each term in the above polynomial [3,5] and
applying Green’s second identity. The boundary integral equation
for the plasma boundary G has the form
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with the fundamental solution c*. Itagaki et al. [4] also
applied the above boundary element formulation to an inverse
analysis where the plasma current density profile was recon-
structed from signals of magnetic sensors located outside the
plasma.

Apart from the above ‘standard’ boundary integral equation
(SBIE), the hyper singular boundary integral equation (HBIE)
[6–10] arises when one takes a gradient of the SBIE. The authors
have a future plan to introduce an HBIE approach into the above
inverse analysis as an alternative to the SBIE or as a part of the
combination of these two equations.

The HBIE corresponding to the Grad-Shafranov equation has
never been solved before. As this equation is for axisymmetric
geometries, the fundamental solution and its derivatives are
written mathematically in quite complicated forms, all of which
contain the complete elliptic integrals (see appendix). Thus one
needs to pay careful attention to their singularities when
manipulating this type of HBIE.

In the present paper the HBIE for the Grad-Shafranov equation
is regularized in a similar manner as that Mansur et al. [10]
used for the HBIE to solve the Laplace equation. A distinctive
feature of the present work is that one must deal also with the
polynomial expanded source. Even this inhomogeneous source
generates a boundary integral, which also contains a hyper
singular kernel.

Section 2 describes the process to transform the original HBIE
into a form that is convenient to remove the singularities. The
resultant boundary integral equation is given in Section 2.5. In
Section 3, all boundary integral terms in the resultant equation are
further rearranged in such a way that each term converges to a
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finite value. Discontinuous boundary elements are commonly
used for all numerical examples given in Section 4, where the
HBIE solutions are compared with the SBIE solutions.

2. Hyper singular boundary integral equation

One here starts with the standard boundary integral equation
for an internal point i
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by substituting ci ¼ 1.0 into Eq. (3). The HBIE is given by
differentiating Eq. (4) at the point i along an arbitrary direction
m ¼ (mr, mz). Using the notation q/qm ¼m �r, the HBIE is written
in the form
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Consider a small semicircle of radius e on the boundary as
depicted in Fig. 1. The source point i is assumed to be at the center
of this semicircle and afterwards the radius e is reduced to zero. In
the following discussion, x ¼ (r, z) denotes an arbitrary point
along the boundary, while n ¼ (a, b) means the source point i, i.e.,
the singular point.

Considering that the boundary is divided into Ge and G�Ge,
Eq. (5) is rewritten in the form
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2.1. Limiting forms of the fundamental solution and its derivatives

The fundamental solution c* satisfies a subsidiary equation

�D�c� ¼ rdi, (7)

where di means d(r�a)d(z�b) with the spike at the point i having
the coordinates (a, b). The mathematical form of c* is given
by [3–5]
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with
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where K(k) and E(k) are the complete elliptic integrals of the first
and second kinds, respectively. When the field point (r, z)
approaches the source point (a, b), K(k) and E(k) can be
approximated as [11]
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q
. Starting with Eqs. (10a) and (10b),

the authors derived the limiting forms of the fundamental
solution and its derivatives when e-0 (the mathematical forms
of the derivatives of c* are listed in appendix). In this process, the
relationships, r�a ¼ e cosy and z�b ¼ e sin y were used. The
results are shown below.

First, the limit of the fundamental solution is given by
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Also, the derivatives of c* with respect to a and b approach
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when e-0, i.e., r-a and z-b. As a linear combination of
Eqs. (12a) and (12b), the derivatives of c* along the direction m
takes the limit
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Next, one investigates the limit of q2c/qm qn. Based on the
following four limits:
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Fig. 1. Boundary surface augmented by a small semicircle of radius e.
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