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a b s t r a c t

A Galerkin boundary node method (GBNM) is developed in this paper for solving biharmonic problems.

The GBNM combines an equivalent variational form of boundary integral formulations for governing

equations with the moving least-squares approximations for construction of the trial and test functions.

In this approach, only a nodal data structure on the boundary of a domain is required. In addition,

boundary conditions can be implemented accurately and the system matrices are symmetric. The

convergence of this method and numerical examples are given to show the efficiency.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Boundary integral equations (BIEs) and boundary element
methods (BEMs) [1,2] are attractive computational techniques for
linear and exterior problems as they can reduce the dimension-
ality of the original problem by one. Especially for exterior
problems, the use of classical methods, such as finite difference or
finite element methods (FEMs) [3], requires discretization of the
entire exterior, whereas with the BEM only the surface needs to be
discretized. However, the BEM still requires boundary discretiza-
tion, which may cause some inconvenience in the implementa-
tion, such as attacking complicated boundary problems and
moving boundary problems. For the sake of avoiding meshing, a
new type of method called meshfree or meshless method has
been developed in recent years [4,5]. That method does not
require a mesh to discretize the problem domain, and the
approximate solution is constructed entirely based on a set of
scattered nodes.

The meshless methods can be divided into two categories: the
domain type and the boundary type. Several domain type
meshless methods, such as the element free Galerkin method
(EFGM) [4,6], the reproducing kernel particle method (RKPM) [7],
the moving least-square (MLS) reproducing kernel method [8],
the finite point method [9] and the h–p meshless method [10] are
very promising methods, and their mathematical background
were well investigated.

The boundary type meshless methods are developed by the
combination of the meshless idea with BIEs, such as the boundary

node method (BNM) [11,12], the hybrid boundary node method
(HBNM) [13–15], the regular hybrid boundary node method
(RHBNM) [16,17], the boundary point interpolation method [18],
the boundary cloud method (BCM) [19], the boundary knot
method [20], and the boundary particle method [21]. Compared
with domain type meshless methods, this type of approaches
have a well-known dimensionality of the BEM, thus they have
been proposed and achieved remarkable progress in solving
a broad class of boundary value problems. Despite their
popularity, there exist some problems related to their effi-
cient implementation. Among these there are difficulties in
satisfying boundary conditions when the shape functions lack
the delta function property, the system matrices of many
boundary type methods are non-symmetric, and the theoretical
basis of these methods is just being studied and far from
completion.

In this paper, a Galerkin boundary node method (GBNM) is
developed for the interior and exterior biharmonic problems. The
GBNM represents a coupling between the MLS approach [4,22]
and a variational formulation of BIEs. The MLS approximation is
used to construct the trial and test functions. In the GBNM,
boundary conditions can be satisfied accurately via multiplying
the MLS shape function and integrating on the boundary. Besides,
the system matrices are symmetric. This property of symmetry
can be an added advantage in coupling the GBNM with the FEM or
other established meshless methods such as the EFGM.

The rest of this paper is outlined as follows. Section 2 presents
the MLS approximation and its properties. In Section 3, a detailed
numerical implementation of the GBNM is described for solving
biharmonic problems. Section 4 provides the convergence analysis
of this method in Sobolev spaces. Numerical examples are given in
Section 5. Section 6 contains some conclusions.
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2. The MLS approximation

In the MLS method, the numerical approximation starts from a
cluster of scattered nodes instead of elements. This section gives a
brief summary of the MLS approximation, of which excellent
illustrations can be seen in Refs. [4,22].

Let G be a smooth, simple closed curve in the plane and
let O and O0 denote its interior and exterior, respectively. Let
QN:¼fx1;x2; . . . ;xNg denote an arbitrarily chosen set of N nodes.
The set QN is used for defining a finite open covering fRig

N
i¼1 of G

composed of N balls Ri centered at the points xi, where Ri is the
support domain of xi. Besides, let wi, i ¼ 1;2; . . . ;N, denote
nonnegative weight functions that belong to the space Ca

0ðRiÞ,
aX0, and satisfy

PN
i¼1wiðxÞ ¼ 1, 8x 2 G.

Assume that xðsÞ 2 G, the MLS approximation for a given
function v is

vðxÞ �MvðxÞ:¼
XN

i¼1

FiðxÞvi (1)

where M is an approximation operator

FiðxðsÞÞ:¼
Xb
j¼0

PjðsÞ½A
�1
ðsÞBðsÞ�ji (2)

and the matrixes AðsÞ and BðsÞ being defined by

AðsÞ ¼
XN

i¼1

wiðsÞPðsiÞP
T
ðsiÞ (3)

BðsÞ ¼ ½w1ðsÞPðs1Þ;w2ðsÞPðs2Þ; . . . ;wNðsÞPðsNÞ� (4)

in which s is a curvilinear co-ordinate on G, PðsÞ is a vector of the
polynomial basis, bþ 1 is the number of terms of the monomials.

Assumption. For our subsequent error analysis, we impose the
following conditions:

A1. There exists a nonnegative integer gpa such that the MLS
shape functions FiðxÞ 2 Cg

ðGÞ and the boundary G is a Cg

curve.
A2. There is a constant h such that the radii of any boundary

point’s support domain is less than h.
A3. There exist nonnegative integers K1ðxÞXb and K2ðxÞ such that

for any x 2 G, there are at least K1ðxÞ boundary nodes, and at
most K2ðxÞ boundary nodes lie on the support domain of x.

A4. There are constants CF1 and CF2 independent of h such that
CF1h�jpkDjFiðxÞkL1ðGÞpCF2h�j, 0pjpg, 1pipN.

Remark 2.1. Assumption (A3) is quite natural since, otherwise, as
the number of boundary nodes lie on a local area increases, the
shape functions tend to be more and more linearly dependent in
the local area. Additionally, as indicated by Duarte and Oden [10],
a necessary condition for the moment matrix AðsÞ to be invertible
is that there are at least b nodes covered in the support domain of
every sample point xðsÞ 2 G.

Notation 2.1. In what follows we will use the notation Ri for the
set of boundary points whose support domain including the
boundary node xi, 1pipN.

It should be pointed out that for different boundary point, x, the
support domain varies from point to point, hence Ri

� Ri if and
only if the radii of the support domain is a constant for all
boundary points.

According to weight functions wiðsÞ 2 Ca
0ðRiÞ and the condition

of (A1), we can easily deduce that the MLS shape functions have
compact supports, i.e.:

Proposition 2.1. FiðxÞ 2 Cg
0ðR

i
Þ, 1pipN.

Proposition 2.2 (Liu et al. [8]).
PN

i¼1 DjFiðsÞðsi � sÞk ¼ k!djk,
0pjpa, 0pkpb.

The following theorem gives an approximation estimate for the
MLS approximations, which is central to the convergence proof of
the presented GBNM.

Theorem 2.1. Assume that vðxÞ 2 Hmþ1
ðGÞ. Let MvðxÞ ¼

PN
i¼1 FiðxÞvi,

then

kvðxÞ �MvðxÞkHk
ðGÞpChmþ1�k

kvðxÞkHmþ1
ðGÞ; 0pkpmpg (5)

where C is a constant independent of h, and Hk
ðGÞ means the Sobolev

space of functions defined on the curve G [23].

This result was proved by Han and Meng [7] in the context of
the RKPM. The proof of the theorem above exactly along the same
lines and we shall omit the proof.

3. GBNM for biharmonic problems

3.1. Galerkin procedures

We consider the following interior and exterior biharmonic
problems:

D2u ¼ 0 in O or O0 ¼ R2=O
u ¼ u0 on G ¼ qO
qu

qn
¼ g on G

8>>><
>>>:

(6)

where u0 2 H3=2
ðGÞ and g 2 H1=2

ðGÞ are prescribed functions, and
n ¼ ðn1;n2Þ is the outward normal to the boundary.

The biharmonic problem (6) is important in the modeling of
many engineering applications such as bending of thin plate and
flow of viscous fluid. In the case of the exterior problem, we
append to problem (6) the following condition at infinity [24]:

uðxÞ ¼ OðjxjÞ as jxj ! 1 (7)

to be sure of the uniqueness of the solution.
Let q be the jump of traces of the function qDu=qn across the

boundary G, and j be the jump through G of Du. Then according
to the classical results of partial differential equation, problem (6)
admits only one solution in H2

ðOÞ �W2
0ðO

0
Þ [25,26], i.e.,

uðyÞ ¼ �
Z
G

qðxÞu�ðx; yÞdSx þ

Z
G
jðxÞqu�ðx; yÞ

qnx
dSx þ pðyÞ; y 2 R2

(8)

where u�ðx; yÞ ¼ ð1=8pÞjx� yj2 ln jx� yj is the fundamental solu-
tion for the biharmonic operator, pðyÞ 2 P1 with P1 denoting the
set of polynomials of degree no more than one, and W2

0ðO
0
Þ is a

weighted Sobolev space [27]

W2
0ðO

0
Þ:¼fu 2 D0ðO0Þjð1þ r2Þ

ðjlj�2Þ=2
ðlnð2þ r2ÞÞ

�1Dlu 2 L2
ðO0Þ,

jlj ¼ 0;1;Dlu 2 L2
ðO0Þ; jlj ¼ 2g (9)

with l ¼ ðl1; l2Þ, jlj ¼ l1 þ l2, and r ¼ jxj represents the distance
from the origin to the point x 2 R2.

According to the boundary conditions of problem (6), we get
the following BIEs:

u0ðyÞ ¼ �
R
G qðxÞu�ðx; yÞdSx þ

R
G jðxÞ

qu�ðx; yÞ

qnx
dSx þ pðyÞ

gðyÞ ¼ �
R
G qðxÞ

qu�ðx; yÞ

qny
dSx þ

R
G jðxÞ

q2u�ðx; yÞ

qnxqny
dSx þ

qpðyÞ

qny

8>>><
>>>:

; y 2 G

(10)
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