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Abstract

In this paper a new boundary method for problems of free vibrations of plates is presented. The method is based on mathematically

modelling of the physical response of a system to external excitation over a range of frequencies. The response amplitudes are then used

to determine the resonant frequencies. So, contrary to the traditional scheme, the method described does not involve evaluation of

determinants of linear systems. The method shows a high precision in simply and doubly connected domains. The results of the

numerical experiments justifying the method are presented.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The free vibrations of an isotropic thin elastic plate are
described by the following equation:

rh
q2u

qt2
þDr4u; u ¼ uðx; tÞ; x 2 O � R2. (1)

Here u is the normal displacement of the middle surface of
the plate, r, h and D are the volume density, the thickness
and the rigidity of the plate.

Considering harmonic vibrations

uðx; tÞ ¼ wðxÞ expðiotÞ

the governing equation can be written in the following
dimensionless form

r4w� k4w ¼ 0; k4
¼

rha4o2

D
, (2)

where a is a typical linear size of the plate. The problem of
free vibration is to find the real k for which there exist non-
null functions w verifying (2) and some homogeneous
boundary conditions:

B½w� ¼ 0; x 2 qO. (3)

The operator of the boundary conditions B½. . .� will be
specified below.
The problems (2), (3) is a classical problem of mathema-

tical physics. Apart from a few analytically solvable cases
[1–3], there is no general solution of this problem. Therefore,
a large number of numerical methods have been developed
for many practical problems. The usual approach for
eigenvalue problems with a positive defined operator is to
use the Rayleigh minimal principle. See [4–6] for more details
and references. Then, using an approximation for w with a
finite number of free parameters, one gets the same problem
in a finite-dimensional subspace which can be solved by a
standard procedure of linear algebra, e.g., see [7,8]. The
global basis functions [9–11] as well as finite elements [12,13]
are used for this approximation.
Recently, some new powerful numerical techniques have

been developed in this field. These are the differential
quadrature methods proposed by Bellman and coworkers
in 1972 [14], its recent version—the generalized differential
quadrature (GDQ) approach [15,16] and the discrete
singular convolution (DSC) algorithm which can be
regarded as a local spectral method [17,18].
The boundary methods [19], in particular, the method of

fundamental solutions (MFS) [20,21] are convenient in
application to the problems (2), (3).
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In the framework of the boundary methods a general
approach to solving these problems is as follows. First,
using an integral representation of w in the BEM, or an
approximation over fundamental solutions in MFS, one
gets a homogeneous linear system AðkÞq ¼ 0 with matrix
elements depending on the wave number k. To obtain the
non-trivial solution the determinant of this matrix must be
zero:

det½AðkÞ� ¼ 0. (4)

To get the eigenvalues this equation must be investigated
analytically or numerically. This technique is described in
[22–26] with more details. In the two latest papers there is a
complete bibliography on the subject considered.

Another technique is proposed in [27–29]. This is a
mathematical model of physical measurements when the
resonance frequencies of a system are determined by the
amplitude of response to some external excitation.

Let us consider the eigenvalue problem:

L½w� þ lw ¼ 0; x 2 O � R2; B½w� ¼ 0; x 2 qO. (5)

The method presented is as follows. Let us extend the
operator of the problem from the initial domain O into a
more wider O0. In particular case O0 ¼ R2. Let wpðxÞ be a
particular solution of the PDE

L½w� þ lw ¼ f ðxÞ; x 2 O0,

where f ðxÞ ¼ 0 for x 2 O � O0. If wh is the solution of the
boundary value problem

L½wh� þ lwh ¼ 0; x 2 O,

B½whðxÞ� ¼ �B½wpðxÞ�; x 2 qO,

then, the sum wðx; lÞ ¼ wh þ wp satisfies (5). Let F ðlÞ be
some norm of the solution w. This function of l has
extremums at the eigenvalues and, under some conditions
described below, can be used for their determining.

The outline of this paper is as follows. The main
algorithm is described in Section 2. In Section 3, we give
numerical examples to illustrate the method presented for
simply and multiple connected domains. In particular, the
case of doubly connected region with the inner region of
vanishing maximal dimension which is important for
technical applications is considered here.

2. The main algorithm

2.1. 1D case

For the sake of simplicity, let us consider 1D problem of
free vibrations of a homogeneous beam with simply
supported endpoints (SS conditions).

q2u
qt2
þ

EI

rS

q4u
qx4
¼ 0; 0pxpl, (6)

uð0; tÞ ¼
q2u

qx2
ð0; tÞ ¼ 0; uðl; tÞ ¼

q2u

qx2
ðl; tÞ ¼ 0,

where E is Young’s modulus, r is density, S and I are the
area and moment of inertia of the cross section. Let us
consider the harmonic vibration

uðx; tÞ ¼ wðxÞeiot.

The eigenvalue problem, can be written in the dimension-
less form as follows:

d4w

dx4
� k4w ¼ 0, (7)

wð0Þ ¼ wð2Þð0Þ ¼ wð1Þ ¼ wð2Þð1Þ ¼ 0, (8)

where

k4
¼

rSl4o2

EI
. (9)

It can be proved that k is a dimensionless value. The
problem (7), (8) has a well-known solution:

kn ¼ np; jnðxÞ ¼ sinðnpxÞ.

On the other hand, the differential operator of the problem
can written as a product

d4

dx4
� k4

¼
d2

dx2
� k2

� �
d2

dx2
þ k2

� �
�L2ðkÞL1ðkÞ.

Let us assume that ka0, then, the two singular solutions
corresponding these two operators are

F1ðx; xÞ ¼ expðikjx� xjÞ; F2ðx; xÞ ¼ expðkjx� xjÞ. (10)

The MFS solution of (7), (8) can be written in the following
way:

w ¼ q1F1ðx; x1Þ þ q2F2ðx; x1Þ þ q3F1ðx; x2Þ þ qF2ðx; x2Þ

¼ q1e
ikðx�x1Þ þ q2e

kðx�x1Þ þ q3e
�ikðx�x2Þ þ q4e

�kðx�x2Þ,

where x1o0 and x241 are the positions of the MFS source
points.
Using the boundary conditions (8) and setting equal to

zero the determinant of resulting linear system we get

1 1 1 1

�1 1 �1 1

eik ek e�ik e�k

�eik ek �e�ik e�k

���������

��������� ¼ 0,

or after simple transforms:

ðeik � e�ikÞðek � e�kÞ ¼ 0.

We get the wave numbers kn as solutions: sinðkÞ ¼ 0, or
k ¼ np. Thus, MFS gives the exact solution. Note that in
multidimensional cases such computations are not so
simple and are time consuming.
According to the technique presented we solve the

inhomogeneous problem:

d4w

dx4
� k4w ¼ f ðxÞ; wð0Þ ¼ wð2Þð0Þ ¼ wð1Þ ¼ wð2Þð1Þ ¼ 0.

(11)

Here x 2 ½A;B�, where ½A;B� � ½0; 1� is a large enough
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