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a  b  s  t  r  a  c  t

The  development  of  quantitative  structure  retention  relationships  (QSRR)  having  sufficient  accuracy  to
support  high  performance  liquid  chromatography  (HPLC)  method  development  is  still  a major  issue.  To
tackle this  challenge,  this  study  presents  a novel  QSRR  methodology  to  select  a  training  set of  compounds
for  QSRR  modelling  (i.e.  to filter  the  database  to identify  the most  appropriate  compounds  for  the training
set).  This  selection  is  based  on  a dual  filtering  strategy  which  combines  Tanimoto  similarity  (TS)  searching
as  the  primary  filter  and  retention  time  (tR) similarity  clustering  as  the  secondary  filter,  using  a  database  of
pharmaceutical  compound  retention  times  collected  over  a  wide  range  of hydrophilic  interaction  liquid
chromatography  (HILIC)  systems.  To  employ  tR similarity  filtering,  correlation  to  a molecular  descriptor
is  used  as  a  measure  of  retention  time.  For  the  retention  time  of a compound  to  be  modelled  a  rela-
tionship  between  experimental  chromatographic  data  and  various  molecular  descriptors  is  calculated
using  a  genetic  algorithm-partial  least  squares  (GA-PLS)  regression.  The  proposed  dual-filtering-based
QSRR  model  significantly  improves  the  retention  time  predictability  compared  to the  diverse,  global,  and
TS-based  QSRR  models,  with  an  average  root  mean  square  error  in prediction  (RMSEP)  of 11.01%  over
five  different  HILIC  stationary  phases.  The  average  CPU  time  for implementing  the  proposed  approach
is  less  than  10 min,  which  makes  it  quite  favorable  for rapid  method  development  in  HILIC.  In addition,
interpretation  of  the  molecular  descriptors  selected  by  this  novel  approach  provided  some  insight  into
the HILIC  mechanism.

Crown  Copyright  © 2017  Published  by Elsevier  B.V.  All  rights  reserved.

1. Introduction

The motivation behind the use of quality by design (QbD) prin-
ciples in conjunction with HPLC method development has been
the desire to develop more robust and reliable analytical meth-
ods with minimal time and resource effort [1–5]. To this end,
theoretical approaches have been employed for method develop-
ment to propose different retention models that relate retention
time/factor of an analyte to properties of the stationary phase, the
eluent, and the analyte itself [6–8]. An important computational
approach in predicting retention times in HPLC method develop-
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ment is the quantitative structure-retention relationships (QSRR)
method, which correlates the retention time of an analyte to its
chemical structure [9].

Although QSRR modelling methods have been used for more
than 40 years, the retention time prediction accuracy of such mod-
els is not often sufficient to make them favorable for HPLC method
development purposes [9]. As a consequence, QSRR methodology
is still an active research area. A key component that can poten-
tially lead to improvement in QSRR modelling accuracy is the
incorporation of appropriate molecular descriptors into the models
[5]. Numerous different kinds of molecular descriptors have been
reported in QSRR studies, e.g. physicochemical properties [10–12],
solvation descriptors [13,14], quantum-chemical indices [15], 2D
autocorrelation indices [16], GEometry, Topology, Atom-Weights
AssemblY (GETAWAY) descriptors [17] and gonane topological
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weighted fingerprints [18]. In addition, several feature selection
approaches to capture the most informative molecular descrip-
tors with the goal of producing more predictive models have been
reported [6,19,20]. Comparison studies demonstrate that the well-
known genetic algorithm (GA) method performs better than other
possible feature selection mechanisms [20,21].

Another strategy to enhance the level of confidence in QSRR
methodology is the use of the concept of molecular similarity
in compound-classification prior to QSRR modelling. The essence
of the similarity concept is that filtering the database to iden-
tify those compounds which are most structurally similar to the
target analyte, is also likely to identify those compounds which
exhibit similar chromatographic properties to the target ana-
lyte leading to more accurate modelling of retention time [22].
Classification according to similarity has proven to be a power-
ful tool in quantitative structure-property (activity) relationship
(QSPR/QSAR) analysis enabling biomarker discovery, mechanistic
studies, drug development, and technological evaluations in medic-
inal and pharmaceutical industries [23–28]. However, the use of
the molecular similarity concept for QSRR modelling was seldom
reported before Wang et al. [29] presented a compound classifica-
tion method based on logD profile similarity, resulting in enhanced
elution order prediction in acidic and basic chromatographic con-
ditions. Muteki et al. [5] have also assessed the reliability of QSRR
prediction and found that QSRR methodology based on compound
classification significantly improved retention time prediction in
comparison with the models derived from the whole dataset.

Previous work from our group [30] has demonstrated that appli-
cation of the federation of local models strategy, which involves
scanning a database to find those molecules that are most struc-
turally similar to the target analyte and constructing a local
model for each target compound based on its top ranked sim-
ilar molecules, may  help to improve the prediction accuracy of
QSRR models. This compound-classification-based QSRR strategy
successfully utilised Tanimoto [31] cluster analysis to predict reten-
tion times of studied test probes in a HILIC database using an amide
column [32]. However the further application of the proposed mod-
elling approach in datasets collected from other HILIC stationary
phases or other target analytes showed varying degrees of success,
possibly due to the complex retention mechanisms at play in the
HILIC mode [33].

A comparison of global modelling (using the whole dataset for
model production), modelling based on Tanimoto similarity (TS)
clustering, and modelling based on a newly proposed retention
time (tR) similarity clustering method applied to a HILIC dataset,
has shown that while Tanimoto clustering shows an improvement
in error compared to the global model, retention time clustering
is by far the most successful method [34]. However, retention time
clustering is unable to be applied to a real-life situation because the
retention time of the compound under investigation is not known,
and so far, no method has been found to successfully utilise reten-
tion time clustering as part of a dual-filtering approach.

In this study a novel dual-filtering-based QSRR modelling strat-
egy has been applied successfully to a range of HILIC systems. The
proposed dual filtering approach involves selecting structurally
similar training neighbours to a target molecule according to cal-
culated Tanimoto pairwise values, followed by further filtering
according to tR similarity found by utilising the correlation of
molecular descriptors to retention time. The application of the
proposed dual-filtering-based QSRR modelling approach is illus-
trated by the prediction of retention time for various analytes on
HILIC stationary phases, utilising a GA coupled with PLS for vari-
able selection. By using our dual filtering approach, reliable and
accurate GA-PLS models have been established over a wide range
of HILIC datasets. The performance of the GA-PLS models derived
from both diverse and global datasets, and TS-based QSRR models,

is also compared to dual-filtering-based QSRR models. Finally, in
order to obtain some insight into the HILIC mechanism, the selected
molecular descriptors in the dual filtering process have been inves-
tigated.

2. Experimental section

2.1. Sample preparation

Analytical grade adrenaline, noradrenaline, isoproterenol,
salbutamol, dopamine, tyramine, synephrine, 3-methoxytyramine,
norfenefrine, normetanephrine, N-methylephedrine, octopamine,
salicylic acid, 4-hydroxybenzoic acid, 2,3-dihydroxybenzoic
acid, 2,4-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid,
benzoic acid, 3-amino-4-hydroxybenzoic acid, 3-aminobenzoic
acid, vanillic acid, syringic acid, 2-methoxybenzoic acid, p-
toluic acid, 3-hydroxybenzoic acid, 2,5-dihydroxybenzoic
acid, 3,4-dihydroxybenzoic acid, 4-aminobenzoic acid, 4-
aminosalicylic acid, 2′-deoxyadenosine, 2′-deoxycytidine,
2′-deoxyguanosine, adenosine, cytidine, guanosine, inosine,
thymidine, uridine, 2′-deoxyuridine, acyclovir, guanine, xan-
thine, caffeine, theophylline, theobromine, hypoxanthine,
1,3-dimethyluric acid, 5-sulfosalicylic acid, mandelic acid, nico-
tinic acid, p-toluenesulfonic acid, 4-hydroxybenzenesulfonic
acid, tropic acid, 4-aminophenylacetic acid, tryptophan, 2-
phenylethylamine, phenylalanine, benzyltrimethylammonium
(BTMA) chloride, phenyltrimethylammonium (PTMA) chlo-
ride, labetalol, nadolol, propranolol, adenine, uracil, thymine,
cytosine, pindolol, alprenolol, satolol, atenolol, 4-nitrophenyl-
�-d-glycopyranoside, uric acid, vidarabine and tyrosine
were purchased from Sigma–Aldrich (St. Louis, MO,  USA)
and the standards of fenotrole, ritudrine, metaproterenol,
isoxuprine, terbutaline, phenylephrine, methoxamine, 5-
methylsalicylic acid, 2′,3′-dideoxyadenosine, 3′-deoxyguanosine,
5-methyluridine, 3′-deoxythymidine, 2′-deoxyinosine, pentoxy-
phylline, diphylline, 7-hydroxyethyl-theophylline, 1-methyluric
acid, 1-methyl-guanine, 9-methyl-guanine, 3,7-dimethyluric acid,
7-methyl-xanthine, 1,7-dimethyluric acid, proxyphylline and
1,3,7-trimethyl uric acid were purchased from Santa Cruz Biotech-
nology Inc. (CA, USA). Acetonitrile and methanol of HPLC grade
were supplied by VWR  International (Melbourne, VIC, Australia)
and Sigma–Aldrich (St. Louis, MO,  USA), respectively. Formic acid
(FA) and ammonium formate (NH4FA), both of analytical grade,
were obtained from Sigma–Aldrich (St. Louis, MO,  USA). 18.2
M� Milli-Q water produced using a Millipore Gradient water
purification (Millipore, Bedford, MA,  USA) system, was used to
prepare mobile phase and sample solutions.

2.2. Standard solutions

Standard stock solutions (1000 �g mL−1) of each analyte were
obtained by dissolving an appropriate amount in the appropriate
solvent. For �-adrenergic agonists and �-blockers methanol was
used, with the exception of adrenaline and 3-methoxytyramine,
which were prepared in acidified methanol (0.5% 1 M formic acid
in methanol); for benzoic acids and nucleosides the standard solu-
tions were prepared in acetonitrile-water (90:10) solution. 0.01N
NaOH solution was  used to dissolve uric acids and standard solu-
tions of xanthines standard solutions were prepared in water,
with the exception of 1-methyl-guanine and guanine which were
prepared in aqueous formic acid (1% v/v). The aqueous solutions
of guanine, xanthine, 7-methyl-xanthine, theobromine, hypoxan-
thine, 1-methyluric acid, uric acid and vidarabine were centrifuged
and the supernatant used as the stock solution. The standard
solution of the rest of the compounds was  obtained in acetonitrile-
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