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Abstract

In this paper we combine the method of fundamental solutions with various regularization techniques to solve Cauchy problems of

elliptic differential operators. The main idea is to approximate the unknown solution by a linear combination of fundamental solutions

whose singularities are located outside the solution domain. To solve effectively the discrete ill-posed resultant matrix, we use three

regularization strategies under three different choices for the regularization parameter. Several examples on problems with smooth and

non-smooth geometries in 2D and 3D spaces using under-, equally, and over-specified Cauchy data on an accessible boundary are given.

Numerical results indicate that the generalized cross-validation and L-curve choice rulers for Tikhonov regularization and damped

singular value decomposition strategy are most effective when using the same numbers of collocation and source points. It has also been

observed that the use of more Cauchy data will greatly improve the accuracy of the approximate solution.

r 2006 Published by Elsevier Ltd.

Keywords: Method of fundamental solutions; Cauchy problems; Inverse problems; Regularization methods

1. Introduction

The method of fundamental solutions (MFS) has
recently been used extensively for solving various types of
linear partial differential equations. For instances, Laplace
equation [1–3], biharmonic [4,5], elastostatics problems [6],
and wave scattering problems [7,8]. More recently, the
MFS has successfully been applied to approximate the
solutions of non-homogeneous linear and nonlinear
Poisson equations [9–12]. Details can be found in the
review papers of Fairweather and Karageorghis [13] and
Golberg and Chen [14]. These problems are called well-
posed direct problems in which the Dirichlet or Neumann

data on the whole boundary are known. In the studies of
inverse problems, the boundary data are given with noises
on part of the accessible boundary. This usually poses
difficulty on most of the traditional numerical methods to
obtaining acceptable numerical approximation to the
solution. The truly meshless MFS is an excellent candidate
for solving these kinds of inverse problems.
The Cauchy problem for an elliptic equation is a typical

ill-posed problem whose solution does not depend con-
tinuously on the boundary data. That is, a small error in
the specified data may result in an enormous error in the
numerical solution. The Cauchy problem for the Laplace
equation arises from many branches of science and
engineering such as non-destructive testing [15], steady-
state inverse heat conduction [16], and electro-cardiology
[17]. Some numerical methods have recently been devel-
oped [18–24]. To handle the severe ill-conditioning
problem, the truncated singular value decomposition
(TSVD) and first order Tikhonov regularization (TR)
techniques with L-curve choice criterion have been used in
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[25] and [26,27], respectively, to solve Cauchy problem of
Helmholtz-type equations with equally or over-specified
Cauchy data.

In this paper, we combine the MPS with various
regularization techniques to solve Cauchy problems of
Laplace and Helmholtz-type equations using under-,
equally, and over-specified Cauchy data. This provides an
effective and stable numerical approximation to the
solution. The outline of the paper is as follows: the
formulation of Cauchy problem is first given in Section 2.
The key idea of MFS is then reviewed in Section 3. In
Section 4, we combine the MFS with the following
regularization techniques:

� Tikhonov regularization (TR) method,
� damped singular value decomposition (DSVD),
� truncated singular value decomposition (TSVD)

under three choice rules for regularization parameters:

� discrepancy principle (DP),
� L-curve criterion (LC),
� generalized cross-validation (GCV),

for the numerical approximation of the solution to Cauchy
problems of elliptic operators. Details on these regulariza-
tion techniques can be found in [28]. Numerical examples
and comparisons given in Section 5 indicate that the TR
and DSVD regularization techniques combined with the
GCV or the LC choice rules for the regularization
parameter are most effective for the cases of resultant
square matrix, i.e. the total number of collocation points
equals the total number of source points. For non-square
matrix case, the LC can still provide an acceptable
approximation but the GCV does not work well. The
TSVD under the three choice rules for the regularization
parameter on under-specified boundary data has found to
be very unusable. This is different from the conclusion
presented in [25] where the Cauchy data is given on 3

4
part

of the whole boundary. Furthermore, our numerical
experiments show that the DP works well for Laplace
and modified Helmholtz equation but fails for Helmholtz
equation in which the resultant matrix is complex. The
DP rule needs an a priori noise level which in practice is
difficult to be determined. For this reason, we focus in
this paper the use of noise-free choice rules, i.e. LC and
GCV. It is also observed that the use of over-specified
Cauchy data will greatly improve the accuracy of an
approximate solution. Finally, the conclusion is given in
Section 6.

2. Formulation of the Cauchy problem

Let O be a bounded and simply connected domain in Rd ,
d ¼ 2; 3 with Lipschitzian boundary and G is a portion of
the boundary qO. A Cauchy problem for an elliptic
equation in multidimensional domain is to determine a

distribution function u 2 C2ðOÞ \ C1ðOÞ that satisfies

Lu ¼ 0 in O, ð1Þ

ujG ¼ j, ð2Þ

qu

qn

����
G
¼ c, ð3Þ

where L is a second order elliptic operator in Rd , j and c
are, respectively, the Dirichlet and Neumann data specified
on boundary G, qu=qn is the outward normal derivative of
u at G. It is noted that if G is the whole boundary qO, the
problem is a well-posed direct problem. In this paper, we
consider three elliptic operators: Laplace (Lu ¼ Du),
Helmholtz (Lu ¼ Duþ k2u), and modified Helmholtz
(Lu ¼ Du� k2u), where D is the Laplace operator in Rd

and k is a real positive constant. See Fig. 1 for an
illustration of the problem setting.
Problem (1)–(3) when L ¼ D is a classical Cauchy

problem for Laplace equation which is typically ill-posed
[29]. Under an additional a priori condition, a continuous
dependence of the solution on the given data can be
obtained [30,31]. The instability of the solution to the
Cauchy problem of Helmholtz equation can be shown by
considering the following example in 2D case:
let

O ¼ fP ¼ ðx; yÞj0oxo1; 0oyo1g (4)

and

G ¼ qO \ fy ¼ 0g.

The solution when

j ¼
1

k2n2
sinð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1

p
kxÞ; c ¼ �

1

kn
sinð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1

p
kxÞ

is given by

uðx; yÞ ¼
1

k2n2
sinð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1

p
kxÞekny,

for ðx; yÞ 2 O. Therefore, we have

sup
P2G
fjjj þ jcjg ¼ O

1

n

� �
! 0 as n!1,
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Fig. 1. Cauchy problem for two domains O. Dots (�) and (�) are

collocation points for Dirichlet and Neumann data, respectively. Circles

(�) represent source points. (a) Square domain and (b) circle domain.
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