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a  b  s  t  r  a  c  t

This work  is  concerned  with  the  analytical  solutions  and  moment  analysis  of  a  linear  two-dimensional
general rate  model  (2D-GRM)  describing  the  transport  of  a solute  through  a chromatographic  column
of  cylindrical  geometry.  Analytical  solutions  are  derived  through  successive  implementation  of  finite
Hankel  and Laplace  transformations  for two  different  sets  of boundary  conditions.  The  process  is  further
analyzed  by  deriving  analytical  temporal  moments  from  the  Laplace  domain  solutions.  Radial  gradients
are  typically  neglected  in  liquid  chromatography  studies  which  are  particularly  important  in  the  case  of
non-perfect  injections.  Several  test  problems  of  single-solute  transport  are  considered.  The derived  ana-
lytical results  are  validated  against  the  numerical  solutions  of  a high  resolution  finite  volume  scheme.  The
derived  analytical  results  can play  an important  role  in  further  development  of  liquid  chromatography.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Mathematical modeling of liquid chromatography has been an
attractive field of research since the 1960s, leading to a more
efficient use of chromatographic columns. The approach pro-
vides important information about physical and thermodynamical
kinetics as well as flow phenomena through packed-beds. Under-
standing of the effects of operating variables and parameters
characterizing the column is needed for an accurate theoreti-
cal analysis of the elution profiles and to optimize the operating
conditions [1–3]. Different mathematical models exist in the liter-
ature describing the chromatographic process. The most notable
amongst them are the general rate model (GRM), the equilib-
rium dispersive model (EDM) and the lumped kinetic model (LKM)
[1–9]. All these models need important input information regarding
the thermodynamic equilibrium of the distribution of the com-
ponents between the mobile and stationary phases. They differ
essentially regarding the consideration of unavoidable mass trans-
fer processes, which cause undesired band broadening [1,2].

In the literature, analytical solutions for one-, two- and three-
dimensional advection-dispersion equations (ADEs) have been
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developed for predicting the transport of various contaminants in
the soil. The analytical solutions of the one-dimensional ADE sub-
ject to various initial and boundary conditions were derived in [10].
The analytical solutions of the two-dimensional ADE with various
source boundary conditions were presented in [11,12]. The analyt-
ical solutions for three-dimensional ADE were derived in [13,14].
However, these models were mostly limited to ADE in Cartesian
coordinates describing steady uniform flow [14]. The analytical
solutions of the two-dimensional ADE in cylindrical coordinates are
particularly useful for analyzing problems of the two-dimensional
solute transport in a porous medium system with steady uniform
flow [14–19].

In the liquid chromatography, the analytical solutions and
moment analysis of the one-dimensional EDM, LKM and GRM have
been derived for linear isotherms using the Laplace transformation
[4–9,20,21]. Very recently, we have derived analytical solutions and
temporal moments of linear 2D-EDM and 2D-LKM for simulating
liquid chromatography in cylindrical columns [22–24]. This article
extends those analysis to linear 2D-GRM.

Moment analysis is a useful and effective technique for deduc-
ing important information about the retention equilibrium and
mass transfer kinetics in a fixed-bed column. The moment
generating property of the Laplace domain solutions can be
used to derive analytical temporal moments. These moments
can be used to get important information about the retention
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times, band broadenings, and front asymmetries. Several authors
have derived moments for various boundary conditions (BCs)
[5–8,20,21,2,25–37].

In this article, the above analysis is further extended by ana-
lytically solving a 2D-GRM through simultaneous implementation
of Hankel and Laplace transformations. In the current scenario,
no analytical Laplace inversion is possible. Therefore, numerical
Laplace inversion is applied to get back semi-analytical solutions
in the actual time domain [38]. To analyze the effects of different
kinetic parameters, statistical temporal moments are derived from
the Hankel and Laplace transformed solutions. A high resolution
upwind finite-volume scheme (HR-FVS) is extended to numerically
approximate the current model equations [39,40]. To illustrate the
potential of the current analysis, several case studies are carried
out considering a wide range of mass transfer kinetics. Also, rela-
tions are derived for matching the first two moments of 2D-GRM
and simplified 2D-LKM. The derived semi-analytical results are crit-
ically checked against the numerical solutions of the suggested
HR-FVS.

The novelty of this article specifically include: (a) the derivation
of analytical solutions of linear 2D-GRM for two  different sets of
boundary conditions, (b) injection of specific profiles to amplify the
effect of possible rate limitations of the mass transfer in the radial
direction, (c) derivation of useful moment expressions, (d) imple-
mentation of a numerical scheme to the model equations, and (e)
derivation of relations among the kinetic parameters of 2D-GRM
and 2D-LKM through comparison of their respective moments. The
derived analytical and numerical solutions are useful tools for fur-
ther developments in the liquid chromatography. For instance, this
analysis can be used to study the effects of mass transfer kinet-
ics on the elution profiles, for sensitivity analysis, for validating
numerical solutions, and for determining longitudinal and radial
dispersion coefficients from experimentally determined elution
profiles, among others. The studied 2D-model is more general and
flexible than the classical 1D-models [7].

The current 2D-model can be useful if (i) the injection at the
column inlet is not perfect (i.e. a radial profile is introduced at the
column inlet), (ii) the column is not homogeneously packed (which
is more probable for larger columns), (iii) there are radial tempera-
ture gradients, which are connected also with radial concentration
gradients. All such scenarios can happen in reality. In many chro-
matography processes, deviations from predictions using a simpler
1D model might be small. However, the differences are difficult to
evaluate and it is desirable to have quantitative tools and criteria to
rationally select the right model. With our current 2D-GRM model,
we can study the situation (i) by assuming injections in inner cylin-
drical core or outer annular region. Situations (ii) and (iii) are more
complicated and require further model extensions, for example we
have to consider variable column porosities and to include energy
balance equation in the current model equations. Such extensions
require more detailed treatment which is outside the scope of this
paper.

The remaining parts of this article are organized as follows. In
Section 2, the linear 2D-GRM model is introduced. In Section 3,
the analytical solution of 2D-GRM for considered two types of
boundary conditions are derived. In Section 4, analytical tempo-
ral moments are derived. In Section 5, the numerical test problems
are presented. Lastly, concluding remarks are given in Section 6.

2. The mathematical model of 2D-GRM

In liquid chromatography, the 2D-GRM considers several contri-
butions of the mass transfer processes that lead to band broadening.
Let t denotes the time coordinate, z represents the axial coordinate
along the column length and � be the radial coordinate along the

Fig. 1. Schematic diagram of a cylindrical chromatographic column packed with
uniform spherical particles.

column radius. The solute travels along the column axis in the z-
direction by advection and axial dispersion and spreads along the
column radius in the �-direction by radial dispersion. The following
particular injection conditions are assumed to amplify the effects
of mass transfer in the radial direction. The inlet cross section of
the column is divided into an inner cylindrical core and an outer
annular ring (see Fig. 1) by introducing a new parameter �̄. The
injection can be done either through an inner core, an outer ring or
through the whole cross section. The latter case results if �̄ is set
equal to the radius of the column denoted by R. Since in the latter
case no initial radial gradients are provided, the solutions should
converge into the solution of the simpler one-dimensional model
[7]. It is, however, important to mention that probably the practical
relevance of such kind of injections is of minor importance.

The mass balance equation for a single-solute percolating
through a cylindrical column of radius R filled with spherical par-
ticles of radius Rp is given as
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In the above equation, c is the concentration of a solute in the
bulk phase of the fluid, cp is the concentration of the solute in the
pores of the particles, u is the interstitial velocity, Dz is the axial
dispersion coefficient, and F is the phase ratio which is defined
in term of the external porosity �b as F = (1 − �b)/�b. Moreover,
D� represents the radial dispersion coefficient, kext is the external
mass transfer coefficient and rp is the radial coordinate of spherical
particles.

The mass balance equation in the pores of the particles, consid-
ering two  mechanisms of intraparticle transport, can be expressed
as
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where, q∗
p is local equilibrium concentration of the solute in the

stationary phase, Dp is the pore diffusivity, �p is the internal poros-
ity, and Ds is the surface diffusivity. In the current case of diluted
systems, the following linear isotherm is used:

q∗
p = acp. (3)

In the above equation, a denotes the Henry’s coefficient. In order
to simplify the notations and reduce the number of variables, the
following dimensionless variables are introduced:
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