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Abstract

This study is a progress report that examines the numerical solution of inviscid hyperbolic partial differential equations (PDEs)

without the need for upwind differencing and other numerical artifacts. The fixed frame PDEs are locally transformed by rotating and

translating the coordinate system at each local discretization point. These transformations yield a simpler PDE system that is effectively

linearized. It is assumed that in this transformed local frame within a time interval, Dt, the dependent variables are products of the spatial

dependent radial basis functions (RBFs), and the time dependent expansion coefficients, vðtÞ. This linearization is exploited by

transforming the PDEs into systems of linear ordinary differential equations (ODEs) in terms of the expansion coefficients. The affine

space decomposition is used to obtain an ODE system of Ni ODEs in Ni unknowns that can be integrated exactly in time. Then the entire

set of N expansion coefficients is found. Numerical results show that hyperbolic PDEs can be integrated in time without upwinding and

the root mean square errors between the exact and numerical solutions are indeed very small.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The interest in mesh-free methods to solve partial
differential equations (PDEs) has grown considerably in
the past 15 years. The two principal reasons are: (1) mesh
generation over two- and three-dimensional complicated
domains may require weeks or months to produce a well-
behaved mesh, and (2) the convergence rate of traditional
methods are typically second order, requiring very fine
discretization. The fine discretization required may require
more operations than mesh-free methods, even though the
traditional methods are compactly supported. The mesh-
free radial basis functions (RBFs) have been shown to be
particularly attractive by Fedoseyev et al. [1] and Cheng et
al. [2] because of the exponential convergence of certain
C1 RBFs that has been observed. Various RBFs have been
successfully applied to obtain very accurate and efficient
solutions to PDEs of engineering interest [3,4].

One of the most used RBFs is the multiquadric (MQ)
RBF. The generalized MQ basis function, fjðxÞ ¼

½ðx� xjÞ
2
þ c2j �

b, where x;x‘ 2 Rd . Commonly used values

for b are �1
2
; 1
2
; 3
2
; . . ., although various other exponents have

been successfully used. The impetus in RBF research arose
from the paper by Franke [5] in 1982. Madych and Nelson
[6] and Madych [7] have proven theoretically that MQ
interpolation converges exponentially as Zc=h, where Z is a
real number, Zo1, and h is the average data center
separation. The application of RBFs in the numerical
solution of PDEs was demonstrated in [8] using the
asymmetric collocation approach.
PDEs can be represented in the fixed Euler frame, a

moving frame such as the Lagrangian formulation, or a
frame moving with the characteristic velocities. In this
study, a moving frame representation is chosen so the
dependent variables can be assumed to be separable in
space and time, where the spatial dependence arises from
the choice of basis function and the time dependence arises
from the expansion coefficients, vðtÞ. However, the spatial
basis functions are implicit functions of time because data
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centers can move in time. Depending upon the problem
description, some physical boundary loci may either be
fixed in time or move. Internal boundaries representing
propagating discontinuities move in time. Because the
points can move randomly, a scattered data method is
needed; and MQ-RBFs were shown by Franke [5] to
perform optimally. For hyperbolic PDEs, it is convenient
to decompose a domain, O ¼ [sOs where Os is a
subdomain whose boundaries are either the physical
boundaries and/or internal boundaries such as disconti-
nuities.

In the domain, Os, the spatial dependency of the
dependent variables, Uk, between physical and internal
discontinuous boundaries are represented by a combina-
tion of continuous two-dimensional exponentially conver-
gent RBFs and polynomials. The discontinuities are curves
that are products of polynomials or splines in the
tangential directions and Heaviside functions in the normal
propagating direction. One can construct a generalized
Heaviside function, HsðxÞ, that is unity inside Os, but zero
outside. If a wave breaks forming a discontinuity, then Os

will be partitioned into two or more subdomains. The
starting point for the RBF–PDE scheme is interpolation,
since the initial value problem is essentially an interpola-
tion problem.

The expansion coefficients, {vkðt ¼ 0Þg, for the kth
dependent variable, Ukðx; tÞ are found by specifying the
initial conditions of the dependent variables. However,
these expansions have no conservation constraints. For
time dependent PDE problems in which the dependent
variables are continuous over Os, it is desirable to have
polynomial reproduction, strict conservation, and repre-
sent the spatially dependent variables as a linear combina-
tion of RBFs. The matrix F consists of all f‘ðxjÞ, where
‘j 2 ½1; . . . ;Ni;Niþ1; . . . ;N�. There are N data centers
discretizing Os, with Ni data centers in OsnqOs and Nb

data centers along qOs, such that N ¼ Ni þNb. For
polynomial reproduction, a set of polynomials, P, exclud-
ing constants is appended to the expansion. It is assumed
that set of dependent variable, Uk, can be integrated over
Os to obtain the extensive quantities such as mass,
momentum components, and total energy contained in
the volume, Os. The integrals of mass, momentum
components, and total energy to form the conservative
quantity, Yk ¼

R
Os

Uk dx.
It is convenient to partition the contributions from

interior and boundary points to form block matrices.
Define an RBF matrix Uii that consists of points, x‘ and
xj 2 OsnqO; define an RBF matrix Uib that consists of
points, x‘ 2 OsnqOs and xj 2 qOs; define a RBF matrix Ubi

that consists of x‘ 2 qOs and xj 2 OsnqO; and an RBF
matrix Ubb that consists of x‘ 2 qOs and xj 2 qOs. Define
1i to be a column vector of Ni ones, and 1b to be a column
vector of Nb ones; both are used for conservation
constraints. Define Pi to be an Ni �m polynomial matrix
over the interior, and Pb is an Nb �m polynomial matrix
on the boundary; both are used for polynomial reprodu-

cibility. The other entries are the conservation enforcing
row matrices, WiðxjÞ ¼

R
Os

fðx� xjÞdx; xj 2 OsnqOs, and
WbðxjÞ ¼

R
Os

fðx� xjÞdx;xj 2 qOs. The remaining ele-
ments are: V ¼

R
Os

dx;P ¼
R
Os

PðxÞdx is a 1�m matrix,
and 0 is an m�m matrix of zeros. For convenience, define
the matrices Hii;Hib;Hbi;Hbb, and column vectors vk

i . vk
b ,

Zk
i , and Zk

b where

Hii ¼

Uii 1i Pi

Wi V P

PT
i PT 0

0
B@

1
CA, (1)

Hib ¼ Uib Wb PT
b

� �T
, (2)

Hbi ¼ Ubi 1b Pb

� �
, (3)

Hbb ¼ Ubb, (4)

vk
i ¼

vk
i vk

cons vk
poly

� �T
, (5)

vk
b ¼ vk

b , (6)

Zk
i ¼ Uk

i Yk 0
� �T

, (7)

Zk
b ¼ Uk

b . (8)

The system of equations can be compactly written as

Hii Hib

Hbi Hbb

 !
vk

i

vk
b

" #
¼

Zk
i

Zk
b

" #
, (9)

where vk ¼ ½vk
i ; v

k
b �

T and Zk ¼ ½Zk
i , Z

k
b �

T.
To avoid ill-conditioning, both sides of the general

interpolation equation are multiplied by the approximate
cardinal preconditioner, Ps, for the domain, Os, see Ling et
al. [9–11]. The preconditioner can be conveniently parti-
tioned as

Ps ¼
Ps

ii Ps
ib

Ps
bi Ps

bb

 !
. (10)

For simplicity, it shall be assumed that both H matrices
and the right-hand sides, Zk, are already preconditioned
for both the interpolation problem and the subsequent
PDE and boundary condition approximations.
In the initial value problem, all the expansion coeffi-

cients, vkðt ¼ 0Þ, in Os, are found by specifying the initial
values of Zkðx; t ¼ 0Þ, and the conservation constraint,
Ykðt ¼ 0Þ. Once the set of initial expansion coefficients is
known, then a compatibility variable, Zk, can be recon-
structed over Os.

Zkðx; tÞ ¼ HðxÞvkðtÞ; for all discrete x 2 Os (11)

and the local values of Ukðx; tÞ ¼W�1Zkðx; tÞ, locally, and
HðxÞ is interpreted as a functional.
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