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a b s t r a c t

The paper deals with the formulation and implementation of a new symmetric boundary element

model for the analysis of Kirchhoff plates. The transversal displacement and normal slope boundary

integral equations, usually adopted in the standard boundary element analysis, are considered together

with bending moment, twisting moment and equivalent shear boundary integral equations. These

equations are weighted by considering distributed sources related to the kinematic and static variables

in the virtual-work sense. Moreover, particular attention is paid to the discretization of the boundary

variables by shape functions selected in order to ensure continuity over the boundary and symmetry for

the matrix system. The evaluation of the highly singular boundary integrals for overlapped integration

domains is performed in closed form using a limit approach which provides self-contributions as limit

values of non-singular terms. The corner effects and their treatment in the numerical procedure are also

discussed. Various numerical examples for plates having different boundary conditions illustrate the

performance of the model.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical models based on boundary discretization represent
an efficient tool for the analysis of mechanical problems,
providing compact numerical descriptions and accurate approx-
imations of both the displacement and stress fields. Standard
boundary models are usually based on boundary integral
equations enforced at collocation points. The system entries are
derived from the integration of the product between a shape
function and a singular fundamental solution, usually associated
with static sources. This approach leads to nonsymmetric
systems.

Various collocation boundary element models have been
developed to analyze the Kirchhoff plate problem. The first
contributions came from Jaswon and Maiti [1] and Forbes and
Robinson [2] for plates with smooth boundaries and Bézine [3] for
plates including corner points. Further works were proposed by
Altiero and Sikarskie [4], Stern [5] and by Hartmann and
Zotemantel [6]. More recently contributions by Frangi [7],
proposing a regularized boundary integral formulation, and by
Aristodemo and Turco [8], dealing with the computational aspects
involved in standard boundary element models, appeared.

The absence of symmetry in the collocation boundary element
models hinders the analysis of dynamic problems and coupling
between finite elements and boundary elements. Moreover,

symmetric boundary formulations can take advantage of the
availability of well-established numerical techniques developed in
the context of finite element analysis.

Different methods can be adopted to generate a symmetric
boundary element system. Some of them provide a symmetric
system applying algebraic procedures to the collocation formula-
tions while others employ suitable boundary formulations able to
generate symmetric systems directly. The latter approach starts
from integral equations associated with both static and kinematic
distributed sources and generates the boundary system by the
Galerkin method. Higher order singular kernels occurring in this
case require the use of specialized methods for evaluating double
integrals when integration domains overlap partially or totally.
This computational aspect is more relevant in the boundary
element analysis of Kirchhoff plates which involves hypersingular
kernels.

The first paper on symmetric boundary element models for
Kirchhoff plates came from Tottenham [9] who introduced a
symmetric formulation obtained by weighting, in the Galerkin
sense, the equations related to sources represented by forces,
moments, bi-couples and tri-couples. Some years later a different
symmetric boundary integral formulation, based on four equa-
tions corresponding to static and kinematic distributed sources,
was presented by Hartmann et al. [10] for the analysis of plates
without corner points. Successively, the contributions by Giroire
and Nedelec [11] and by Nazaret [12], concerning plates with free
edges, appeared. More recently, Frangi and Bonnet [13] developed
a symmetric boundary element model for the analysis of
polygonal plates with generic boundary conditions. The boundary
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equations are derived from the stationarity of an augmented
potential energy functional, using Gauss transformations for
regularizing the kernels and evaluating the boundary coefficients
numerically. These transformations change the boundary vari-
ables typically used in the analysis of Kirchhoff plates.

In this paper a symmetric model for the boundary element
analysis of Kirchhoff plates is presented. The paper gives a
complete discussion of the formulation and the computational
aspects involved in the construction of the numerical model. The
aim of the paper is to provide an essential formulation, avoiding
the manipulations associated with the regularization process and
leaving the singularities to the analytical integration technique. In
particular the boundary integral formulation considers five
equations associated with two static sources (force and couple),
two kinematic sources (normal slope and transversal displace-
ment discontinuities) and a corner source (tangent rotation
discontinuity). These equations are used in the Betti theorem in
order to derive the boundary integral formulation which leads to
symmetric systems in a straightforward way. The evaluation of
the double integrals for overlapping domains is pursued by an
entirely analytical integration method based on a limit approach.
The coefficients having singular contributions are computed as
limit values of non-singular integrals [14,19]. It is worth noting
that this general approach was never applied to kernels having
such orders of singularity. This process is developed on contiguous
boundary elements by assuming interpolation functions which
ensure inter-element continuity and vanish at the ends of the
integration domains where the integration process locates the
singularity poles.

After a brief review of the differential formulation of the
Kirchhoff plate, the paper presents the integral formulation used
for the symmetric boundary element analysis of polygonal plates.
Successively, the integration process is sketched by referring to a
typical boundary coefficient. Some tests for plates having different
boundary conditions allow the numerical behavior of the
proposed model to be evaluated in comparison with some refined
collocation boundary element solutions.

2. Differential formulation of the Kirchhoff plate

A thin plate, defined over the domain O delimited by the
boundary G, is considered, using a Cartesian reference system
(O,x,y,z) located on its mid-surface (Fig. 1). The plate, having
thickness h, is subjected to a transversal load p½x; y�.

In the Kirchhoff theory the assumption of negligible shear
deformations leads to the description of the plate bending only in
terms of the transversal displacement w½x; y� [16,17]. The equili-
brium over the domain can be expressed by the field equation

DDDw ¼ p (1)

D being the Laplacian operator, E the elastic modulus, m the
Poisson coefficient and

D ¼ Eh3=12ð1� m2Þ (2)

the flexural rigidity. At any regular boundary point the normal
slope y, the bending moment m, the shear q and the twisting
moment mt are defined by the expressions

y ¼ w;n (3)

m ¼ �Dðw;nn þ mw;ttÞ (4)

q ¼ �Dðw;nnn þ mw;nttÞ (5)

mt ¼ �Dð1� mÞw;nt (6)

where the comma denotes derivation with respect to the unit
outward normal and t the unit tangent to the boundary G. The
contraction of the static variables at smooth boundary points
converts the shear q into the Kirchhoff shear t

t ¼ qþmt;t ¼ �Dðw;nnn þ ð2� mÞw;nttÞ (7)

giving rise to the corner reactions R at the singular boundary
point j

RðjÞ ¼ mðj
þ
Þ

t �mðj
�
Þ

t (8)

where the quantities mðj
þ
Þ

t and mðj
�
Þ

t represent the twisting
moments, furnished by Eq. (6), evaluated at the corner j on the
forward and backward sides, respectively.

The differential problem above has to be solved integrating
Eq. (1) on the basis of the boundary conditions

w ¼ w̄ or t ¼ t̄

y ¼ ȳ or m ¼ m̄

(
(9)

where the barred symbols denote prescribed boundary values.

3. Boundary integral formulation

Boundary integral formulations of the Kirchhoff plate can be
derived weighting the differential equation (1) by an appropriate
test function w� and integrating over the domain O [18]. By
assuming the function w� as the fundamental solution associated
with sources (unit point actions) on the infinite plate and using
the Gauss theorem, a description of the problem in terms of
boundary variables alone is attained. Typical choices for these
sources consist in a force F and a couple C, leading to the following
displacement boundary integral equations:

cwþ

Z
G
ðt�Fwþm�FyÞdGþ

Xnc

j¼1

R�ðjÞF wðjÞ

¼

Z
G
ðtw�F þmy�F ÞdGþ

Xnc

j¼1

RðjÞw�ðjÞF þ

Z
O

pw�F dO (10)

cyþ
Z
G
ðt�Cwþm�CyÞdGþ

Xnc

j¼1

R�ðjÞC wðjÞ

¼

Z
G
ðtw�C þmy�CÞdGþ

Xnc

j¼1

RðjÞw�ðjÞC þ

Z
O

pw�C dO (11)

where the starred quantities represent the fundamental solutions
while w, y, m, t and R denote the boundary fields. Factor c

distinguishes sources located on the boundary ðc ¼ 1
2Þ from

sources inside the domain ðc ¼ 1Þ and nc is the number of corners.
The previous boundary integral equations are usually used to
construct a standard collocation boundary element model [5,6].
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Fig. 1. Variables of the Kirchhoff plate model.
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