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a  b  s  t  r  a  c  t

Taylor  dispersion  analysis  (TDA)  is an  absolute  method  for determining  the diffusion  coefficients,  and
hence  the  hydrodynamic  radii,  of  particles  by  measuring  the  dispersion  in  a carrier  medium  flowing
within  a  capillary.  It is applicable  under  conditions  which  allow  the particles  to radially  diffuse  appreciably
across  the  cross-section  of the  flow  before  the  measurement  and  therefore  implies  long  measurement
times  are  required  for large  particles  with  small  diffusion  coefficients.  In this  paper,  a  method  has  been
developed  by  which  the  diffusion  coefficients  of  large  particles  can  be rapidly  estimated  from  the  shapes  of
the concentration  profiles  obtained  at much  earlier  measurement  times.  The  method  relies  on the  fact  that
the shapes  of the  early-time  concentration  profiles  are  dependent  on the  diffusion  coefficient,  flow  rate
and  the  capillary  radius  through  the  dimensionless  residence  time  which,  theoretically,  is a measure  of
the  amount  of  radial diffusion  undergone  by  the  particles.  The  amount  of  radial  diffusion  for  nanospheres
of  varying  sizes  was  estimated  by quantifying  the  relative  change  in  the  shapes  of concentration  profiles
obtained  at two  points  in  the  flow  and a correlation  was  obtained  with  the  variation  of  the  dimensionless
residence  time  to confirm  the  theory.  This  correlation  was  then  tested  by applying  it to another  set
of  measurements  of solutes  and  solute  mixtures  of  different  sizes  including  a protein.  The  estimated
diffusion  coefficients  were  found  to be in  good  agreement  with  the expected  values.  This  demonstrates
the  potential  for the  method  to  extend  dispersion  analysis  to regimes  well  outside  the  TDA  limits  to
enable  the  rapid  characterization  of  large  particles.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Taylor dispersion analysis (TDA) is an absolute method for deter-
mining the diffusion coefficients, and hence the hydrodynamic radii
of particles. The method, sometimes referred to as Taylor-Aris dis-
persion, was first described by Taylor in his classic paper [1]. In
1956, Aris developed the method further by accounting for the
longitudinal diffusion of the particles [2].

This technique was first applied to the determination of gaseous
[3] and then liquid diffusion coefficients [4–6]. With the use of
fused silica capillaries, TDA regained interest and has been used to
analyze amino acids, peptides, proteins, small molecules, macro-
molecules, nanoparticles and biosensors [7–27].
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Taylor dispersion within a capillary arises as a combination of
the spreading due to axial convection which is regulated by molec-
ular diffusion across the capillary radius. Hence, for TDA to be
applicable, the measurement time must be long enough for radial
diffusion and hence complete Taylor dispersion to occur and the
characteristic Gaussian concentration profiles to develop [28]. This
condition is usually expressed with a dimensionless quantity, the
dimensionless residence time � = Dt/rc

2, which is the ratio of the
residence time t to the characteristic time required for a molecule
of diffusion coefficient D to diffuse across the capillary radius rc. � is
therefore a measure of the degree of radial diffusion and is typically
required to be greater than 1.4 [13]. This implies that for large parti-
cles (with small values of D) long measurement times are required
for TDA to be applicable. Note also that � is a similarity parameter,
i.e. molecules with differing diffusion coefficients but measured at
points with the same values of � have similar concentration profiles.

Recently, a dispersion solution which is applicable at all
measurement times [29] has been used to extract the diffusion coef-
ficients from early-time concentration profiles [24]. This approach,
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however, requires the location of the transition point between con-
vection and Taylor dispersion which can be prone to error or in
some cases be obscured by the response of smaller particles which
may  be present and which undergo complete Taylor dispersion.
Furthermore, mismatches between the concentrations of the solute
buffer and run buffer may  significantly alter the shape of the trace
and result in a poor fit.

An empirical method for the estimation of the diffusion coeffi-
cients of large particles based on the shape of their concentration
profiles has been developed in the past [30–32]. The method is
applicable to particles which undergo partial Taylor dispersion and
correlates the relative heights of the Taylor dispersion peaks and
the convection fronts with the diffusion coefficient and flow rate.

In this paper, an alternative method for estimating the diffusion
coefficients of large particles at times much earlier than required
for TDA is proposed. The method relies on the quantification of the
degree of radial diffusion (or partial Taylor dispersion) that occurs
between two spatially separated points along the flow. Two mea-
sures of the degree of radial diffusion are defined and correlated.
The first measure is the variation of the dimensionless residence
time ��  between two measurement points, which is a function of
the diffusion coefficient, whilst the second measure is a directly
measureable quantity f which is a function of the ratios of the
maximum amplitudes of the convection fronts observed at the
two measurement points. Using samples of known diffusion coeffi-
cients, the correlation between f and ��  is determined so that when
D (and hence ��)  is unknown, it may  be estimated by determin-
ing f which is directly measurable from the observed concentration
profiles.

The paper is organized as follows. First, the dimensionless res-
idence time � is introduced as a measure of the degree of radial
diffusion. Next, the early-time radial diffusion of particles and the
shapes of the corresponding concentration profiles are discussed.
A method for estimating the degree of radial diffusion f from these
concentration profiles is then described. The correlation between f
and ��  is determined and subsequently used to make predictions
for the diffusion coefficients of a wide range of particles.

2. Theory

2.1. The dimensionless residence time �

Taylor dispersion is achieved when there is a balance between
axial convection which tends to disperse the particles along the
streamlines and the radial diffusion that arises from the resulting
concentration gradients which limits the dispersion. At early times,
convective transport is dominant before eventually the degree of
radial diffusion becomes sufficient for the solute particles to limit
the dispersion and give rise to the spatially symmetric concentra-
tion profiles attributable to Taylor dispersion. A measure of the
degree of the radial diffusion is the dimensionless residence time �
which is defined as the ratio of the residence time tm to the charac-
teristic time required for a molecule to diffuse across the capillary
radius and is given by

� = Dtm

r2
c

(1)

where D is the diffusion coefficient and rc is the capillary radius.
The larger the value of �, the greater the degree of radial diffusion
that has occurred. As mentioned in the previous section, a value
of � greater than 1.4 is used as the condition for complete Taylor
dispersion and the applicability of TDA.

2.2. Early-time dispersion and the Taylor-dispersed fraction f

For the Poiseuille flow of a fluid in a circular capillary of radius
a, the velocity u at a distance r from the central line is

u = u0

(
1 − r2

a2

)
(2)

where u0 is the maximum velocity at the axis. If a symmetrical
distribution of solute particles is introduced into the flow, the dis-
persion equation for the concentration distribution is given by [1]
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(3)

where C is the mean concentration of the solute particles over the
cross-section of the tube, t is the time and x is the distance from the
point of injection. If we denote the solute concentration at a radial
distance r as Cr, the mean concentration C is defined by

C = 2
a2

∫ a

0

Crrdr (4)

Under pure convection, the diffusion term on the right hand side
of the dispersion equation can be neglected. Therefore, a solute of
initial concentration C0 injected for a time tinj under constant pres-
sure into the capillary will occupy an initial length X = u0tinj. If the
solute injection is assumed to be stopped at time t = 0, the solution
obtained for the initial average spatial concentration distribution
Cc is given by:

Time t = 0 (Injection):

Cc = 0 : (x < 0)

Cc = C0

(
1 − x

X

)
: (0 < x < X)

Cc = 0 : (x > X)

(5)

For flow-times t > 0 after the injection, there are two time
domains with different concentration profiles. These are:

Time t < X/u0 (Post-injection):

Cc = 0 : (x < 0)

Cc = C0

u0t

(
x − x2

2X

)
: (0 < x < u0t)

Cc = C0

(
1 + u0t − 2x

2X

)
: (u0t < x < X)

Cc = C0

u0t

(
X

2
− (x − u0t)

(
1 − x − u0t

2X

))
: (X < x < X + u0t)

Cc = 0 : (x > X + u0t)

(6)

Time t > X/u0 (Post-injection):

Cc = 0 : (x < 0)

Cc = C0

u0t

(
x − x2

2X

)
: (0 < x < X)

Cc = C0
X

2u0t
: (X < x < u0t)

Cc = C0

u0t

(
X

2
− (x − u0t)

(
1 − x − u0t

2X

))
: (u0t < x < X + u0t)

Cc = 0 : (x > X + u0t)

(7)

Full derivations of these concentration profiles are given in the
Appendix. Similar expressions for the concentration profiles that
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