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Abstract

The improvement of the performance of numerical methods, namely in the presence of incompressible deformations, have been, in the
recent years, an important issue of discussion. However, incompressible or near incompressible behaviour has been a source of problems
for numerical analysis of solid mechanics as the methods tend to present a locking response, or alternatively, spurious modes of
deformation. The element-free Galerkin method (EFGM) is one of these methods, which exhibits some problems, namely, the so-called
volumetric locking and hourglass. The first one is related with an inability to deform in some conditions. The hourglass is related with the
apparition of non-physical eigenvectors. In this publication a new vision based in vector spaces theory is presented which can explain why

these problems appear in the EFGM context.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Problems such as large deformations and/or dynamic
fracture for which there are continuous changes in
geometry implying an important remeshing effort have
been studied by both methods: FEM and Meshless. The
Meshless methods present some advantages which result
mainly of the fact that refinements of the distribution of
nodes are easier to perform than the remeshing procedure
needed in the FEM.

In literature published in the last decade it is possible to
find a large number of different developed Meshless
methods: element-free Galerkin method (EFGM) [1, 2],
where the approximants shape functions are constructed by
means of a moving least-square procedure (MLS) first
introduced by Nayroles et al. [3]. Reproducing Kernel
particle methods [4], h-p Meshless Method [5] Multi-
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quadrics [6, 7], smooth particle hydrodinamics ([8] and
Babuska et al. [9], proposed the method of the partitions of
unity. Duarte and Oden [10] and Liu et al. [11] proved the
convergence of the mesh-free methods. Zhu and Atluri [12]
proposed a Petrov—Galerkin weak form in order to
facilitate the computation of the integrals. However, there
are some common problems involving both FEM and
Meshless methods.

One of them is called volumetric locking and in the
elasticity problems can appear when the coefficient of
Poisson approaches the incompressibility limit 0.5. This
situation appears, when the material is isochoric and the
condition div u=0 1is locally imposed, being u the
displacement field. Shear locking appears in dominant
bending situations. In both situations, numerical problems
arise, and the stiffness increases hindering the movement of
nodes and so, the nodes remain fixed in their original
positions in order to maintain the volume. To solve these
situations, different mathematical tools have been devel-
oped. Mixed formulations split the material model into a
deviatoric and a volumetric part, introducing therefore
more variables. Reduced and selective-reduced integrations
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(SRI) schemes decrease the stiffness of the material,
integrating the contribution of the hydrostatic pressure
field of the stiffness matrix in certain points, fewer than the
ones used for the non-hydrostatic part of the matrix.
Malkus and Hughes [13] established the equivalence of
both procedures under certain conditions for FEM. Later,
the B-bar method was introduced by Hughes [14] and can
be used as a mixed method or as a generalization of the
SRI method. Vidal et al. [15] used a pseudo-divergence-free
method combined with the EFGM. Askes et al. [16]
established conditions for avoiding locking in the EFGM.
Gonzalez et al. [17], enriched the displacement basis in a
natural neighbor Galerkin method. A method based on the
concept of an enhanced strain field was introduced by Simo
and Rifai [18]. For instance, César de Sa and Natal Jorge
[19] proposed new enhanced strain elements within the
scope of the analysis of the incompressible subspace of
solutions. Later, Alves de Sousa et al. [20] extended this
approach for 3D problems.

Another problem is related to the apparition of non-
physical eigenvectors or so called hourglass forms [15].
To solve this problem several stabilization techniques
have been developed in the FEM context. For instance,
Reese and Wriggers [21] and Reese [22], split the element
tangent matrix into constant and hourglass parts making
a modal analysis on nodal level. The method of reduced
integration plus hourglass stabilization has been derived
to solve both locking and hourglass. In recent publica-
tions, hourglass stabilization is derived on the basis of a
mixed method [23,24]. Chen et al. [25] developed a
stabilized conforming nodal integration in the EFGM
approximation.

An example of the utilization of vector spaces theory to
explain the locking phenomena appears in César de Sa and
Natal Jorge [19] in a FEM context. The aim of this work is
to give a global explanation of why both problems arise in
a formulation based in the EFGM. The vector spaces
theory will be used to explain how the shape and dimension
of a vector space can be used to interpret the occurrence of
these phenomena in the EFGM context.

The present article is structured as follows. In Section 2,
the EFGM is briefly described. In Section 3, the vector
spaces theory applied to the interpretation of locking and
hourglass problems in the EFGM context is proposed. In
Section 4 simple numerical examples illustrate the theories
referred previously, using different configurations with an
integration cell and with the nodes over the borders of the
integration cells used in the EFGM.

2. EFG method—a brief description

The EFGM employs moving least-square approximants
to approximate the function u(x) with u"(x). These
approximants are constructed by means of Eq. (1) where
p(x) is a polynomial, a(x) are the unknown parameters and
m is the order of the polynomial.

W (x,x05) = 3 g0y (x). (1)
j=0

The unknown parameters a(x) are determined by means
of the MLS method that minimizes the difference between
the local approximation at any point and the nodal
parameters uy:
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where w(x—x;) is a weight function that determines
the dominium of influence of a node. In this article,
a cubic spline function is used as weight function and
defined as:

247445 for r<i,
wir)=1{ 3—4r+47 -3 for 1<r<l, (3)
0 for r>1,

where r is the normalized radius:

|1x — x|
= 4
cr - dmax @
with d.x being the scaling parameter, which is typically
2.0-4.0 for a static analysis [2], and ¢; is the average
distance between nodes.
Egs. (1) and (2) according to [1] lead to:

Nhodes

'x) = > ¢xu, (5)
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where the approximants are expressed by means of a linear
combination of the nodal parameters, u;. In this case the
multipliers are the shape functions of the EFGM. These
functions do not satisfy the Kronecker delta criterion:
¢ (xy) #0517 so they are approximants functions.

The aim is to know the field u’(x) which best
approximates the real displacements field u(x). This last
field verifies the equilibrium equation (or Cauchy equation)
and the boundary conditions:

V:e6+b=0 inQ, (6)
u=u inJ,Q, (7)
¢-n=t indQ, (8)

where n is the unit normal vector, b is the body force, ¢
represents the Cauchy stresses and Q is its domain which is
bounded by 0,2 and 0,Q.

To solve this system when a discretization of the
continuum medium using a nodal distribution is done, a
variational principle must be considered. There are
different ways to reach this weak form: finding the critical
point of a functional, by means of the principle of the
virtual works, or using the residual of the equilibrium
equation. An approach based in the virtual works is
developed to establish the weak form of the equations.
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