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a  b  s  t  r  a  c  t

The  mixing  rate  (R�)  is  the  temporal  rate  of increase  in the  solvent  strength  in  gradient  LC.  The  optimal
R� (R� ,Opt)  is the  one  at  which  a required  peak  capacity  of  gradient  LC  analysis  is obtained  in the  shortest
time.  The  balanced  mixing  program  is  a one  where,  for better  separation  of  early  eluting  solutes,  the
mixing  ramp  is  preceded  by  a balanced  isocratic  hold  of  the  duration  depending  on R� . The  improvement
in  the  separation  of the  earlier  eluites  due  to the balanced  programming  has  been  evaluated.  The value
of  R� ,Opt depends  on the  solvent  composition  range  covered  by  the mixing  ramp  and  on  the  column
pressure conditions.  The  R� ,Opt for  a  column  operating  at maximum  instrumental  pressure  is  different
from  R� ,Opt for a  column  operating  below  the  instrumental  pressure  limit.  On  the other  hand,  it has
been  shown  that  the  difference  in  the R� ,Opt values  under  different  conditions  is not  very large  so  that
a  single  default  R� previously  recommended  for  gradient  analyses  without  the isocratic  hold  also  yields
a good  approximation  to the  shortest  analysis  time  for  all conditions  in  the balanced  analyses.  With  or
without  the initial  balance  isocratic  hold,  the  recommended  default  R� is  about  5%/t0 (5% increase  in  the
solvent  strength  per each  t0-long  increment  in time)  for  small-molecule  samples,  and  about  an  order
of  magnitude  slower  (0.5%/t0)  for  protein  samples.  A  discussion  illustrating  the  use  of the  optimization
criteria  employed  here  for the  techniques  other  than  LSS  gradient  LC is  included.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

To a large degree, this report continues our previous study [1]
of the mixing rate optimization in LSS (linear solvent strength) gra-
dient LC. The mixing rate [1,2] is the temporal rate, R� = ∂�i/∂t, of
programmable change in the solvent strength (�i) − the volume-
fraction of stronger solvent in the mobile phase − at the column
inlet.

Many studies of optimization of several performance factors
of gradient LC were published [1–11]. The purpose of this report
and its predecessor [1] was to find the optimal mixing rate (R� ,Opt)
defined [1] as the constant R� at which a required peak capacity
[12–15] of LC analysis and, more specifically, a required separa-
tion capacity [2,14–16] of LC column are obtained in the shortest
time. As before [1], only the LSS (linear solvent strength) gradient
LC [17–22] is considered in this report, and the terms gradient LC
and LSS gradient LC are treated here as synonyms.
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In a previous study [1], we found R� ,Opt for what can be called as
the no-hold mixing program − a single-ramp program where the
mixing ramp at the column inlet starts simultaneously with the
sample introduction. If a sample in such analysis contains nearly
identical solutes [2] that are slightly retained at the initial solvent
strength (�init) of the mixing ramp [1,2], further increase in the sol-
vent strength (�) during migration of these solutes will then further
degrade their retention and the separation [14,15,23]. This degra-
dation can be reduced by inserting an isocratic hold of strength �init
prior to the mixing ramp. The duration of the hold can be chosen
in such a way  that all solutes eluting during the ramp following
the hold elute with the same retention factor as the retention fac-
tor at the end of the hold. Due to analogy of such program to that
of the balanced heating program in temperature-programmed GC
[23,24], we call this mixing program and its components (the hold,
the ramp) as the balanced ones.

The method of finding R� ,Opt in this report is substantially simi-
lar to the one earlier employed for the mixing rate optimization in
no-hold mixing in gradient LC [1], and for the heating rate optimiza-
tion in no-hold heating in temperature-programmed GC [16,25].
Only the key points of the optimization method are reproduced
here. A reader interested in additional details can find them in pre-

http://dx.doi.org/10.1016/j.chroma.2016.10.078
0021-9673/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.chroma.2016.10.078
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chroma.2016.10.078&domain=pdf
mailto:leon@advachrom.com
dx.doi.org/10.1016/j.chroma.2016.10.078


36 L.M. Blumberg, G. Desmet / J. Chromatogr. A 1476 (2016) 35–45

Nomenclature

Subscripts
def Recommended default value
i Inlet parameter
init Value at the beginning of the mixing ramp
o Parameter measured at the column outlet
opt Optimum at lowest H
Opt Optimum at shortest t at fixed s
0 Parameter of unretained solute

Symbols
g Normalized range of a sample, Eq. (10)
go Normalized range of mixing ramp, Eq. (10)
i System order (comments to Eq. (5))
k Retention factor
L Column length
M Molecular weight
n Peak capacity, Eq. (1)
R� Mixing rate
r� Dimensionless mixing rate, Eq. (13)
s Separation capacity (number of �-wide segments in

the separation space)
t Time of analysis
t0 Void time
tc Parameter defined in Eq. (5)
Ug Utilization of separability, Fig. 5
u0 Solvent velocity, Eq. (6)
� Peak standard deviation
�char Characteristic strength-constant
� Solvent strength
�char Characteristic solvent strength
�a Asymptotic level of � during the ramp, Eq. (24)

vious publication [1]. Unless it is explicitly stated otherwise, the
standard deviation (�) of a peak [26,27] is the only peak width met-
ric in this report. The use of this metric in this report makes its
results applicable to the peaks of any (not necessarily Gaussian)
shape. As in the preceding paragraphs, the constraints introduced
below are highlighted by the bold face type.

2. Theory

2.1. Known relevant results

2.1.1. Peak capacity and separation capacity
The separation capacity [2,14–16] (s) of a column in a chromato-

graphic analysis is the number of �-slots (�-wide segments) in the
separation space of the analysis. If necessary, the peak capacity
[12–15] (n) of a chromatographic analysis can be found from s as
[2,14,15]:

n = s

�smin
(1)

where �smin is the smallest number of �-slots between two  neigh-
boring peaks required for resolving (quantifiably and identifiably
separating) the peaks. Quantity �smin depends on the ability of data
analysis sub-system to resolve poorly separated peaks [14,15], and
on other factors external to the column. The �smin also depends
on the peak shapes. As in previous studies [1,2,14–16,23,24] of a
column performance and its optimization, metric s, being indepen-
dent of the factors external to the column and of the peak shapes,
is more suitable than n for the study in this report.

2.1.2. Column efficiency and void time
An important parameter of a column performance is its efficiency

[1,2,14,16,23] (E) defined for isocratic conditions as [26]:

E = t

�
, (isocratic conditions) (2)

where t and � are the peak’s retention time and width (standard
deviation), respectively. In many respects, E is a better metric
[2,14,16,23,24] than the wider known plate number, N = E2.

The E of a solute in gradient LC can be defined as the one isocrat-
ically measured for the solute according to Eq. (2) under conditions
reflecting the solvent composition experienced by the solute during
its gradient migration. So measured E can be different for different
solutes as they reside in the column during the gradient analysis
for different times during which the solvent strength changes. As
a result, E in a gradient analysis can be a time-dependent quantity.
Typically, however, the difference between the values of E for the
solutes in the same analysis is practically insignificant and can be
ignored for the sake of simplicity [1,2,8,17,21,28,29]. It is assumed
below that E remains fixed during a gradient analysis. In this study,
the assumption led to the closed-form solutions providing valuable
general insights into the factors affecting the optimal mixing rate
in gradient LC. The assumption of a fixed E in a gradient analysis
implies that the plate height:

H = L

E2
(3)

in a L-long column is also fixed during the gradient analysis.
The void time (t0) in LSS gradient LC does not change during the

analysis [17,22]. The relationship between E and t0 can be summa-
rized as [1,30]:

t0 = tcEi, i = (2,  4) (4)

tc = {
H/u0, i = 2

(H2/Bo)(�/�p), i = 4
(5)

where i = 4 (the quartic,  the fourth order system) represents a col-
umn  operating at the maximum instrumental pressure (the highest
pressure available from LC instrument) and requiring a simulta-
neous increase in the particle size and in the column length for
increasing the column efficiency. The case of i = 2 (the quadratic,
the second order system) represents a column operating at sub-
maximum pressure (below the maximum instrumental pressure)
for which an increase in the column length alone is sufficient for
increasing the column efficiency. The scaling factor (tc) in Eqs. (4)
and (5) is measured in units of time and depends on the system
order (i) and on the operational parameters which might include
the column permeability (Bo), pressure drop (�p), the solvent viscos-
ity (�) and its velocity:

u0 = L

t0
(6)

2.1.3. Retention
As stated earlier, the terms gradient LC and LSS gradient LC are

treated in this report as synonyms. Let � and k be, respectively, the
solvent strength (the volume-fraction of the strongest solvent in
the mobile phase) and the solute retention factor. The linear depen-
dence of ln k on � can be expressed as [2,22]:

ln k = ln k(�) = �char − �

˚char
(7)

where �char and �char are the characteristic solvent strength and
the characteristic strength-constant of the solute. The properties and
advantages of these parameters over the more customary param-
eters [17] kw and S introduced by Snyder are described elsewhere
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