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a  b  s  t  r  a  c  t

The  present  contribution  is  devoted  to develop  multivariate  analytical  figures  of  merit  (AFOMs)  as a
new  metric  for evaluation  of  quantitative  measurements  using  comprehensive  two-dimensional  gas
chromatography–mass  spectrometry  (GC  × GC–MS).  In this  regard,  new  definition  of  sensitivity  (SEN)  is
extended  to  GC × GC–MS  data  and  then,  other  multivariate  AFOMs  including  analytical  SEN  (�),  selectiv-
ity  (SEL)  and  limit  of  detection  (LOD) are  calculated.  Also,  two  frequently  used  second-  and  third-order
calibration  algorithms  of multivariate  curve  resolution-alternating  least  squares  (MCR-ALS)  as  repre-
sentative  of  multi-set  methods  and  parallel  factor  analysis  (PARAFAC)  as  representative  of  multi-way
methods  are  discussed  to  exploit  pure component  profiles  and to  calculate  multivariate  AFOMs.  Differ-
ent  GC  × GC–MS  data  sets  with different  number  of components  along  with various  levels  of artifacts  are
simulated  and  analyzed.  Noise,  elution  time  shifts  in  both  chromatographic  dimensions,  peak  overlap
and  interferences  are  considered  as the  main  artifacts  in this  work. Additionally,  a new  strategy  is devel-
oped  to estimate  the noise  level  using  variance-covariance  matrix  of residuals  which  is  very important
to  calculate  multivariate  AFOMs.  Finally,  determination  of polycyclic  aromatic  hydrocarbons  (PAHs)  in
aromatic  fraction  of heavy  fuel  oil  (HFO)  analyzed  by GC  ×  GC–MS  is  considered  as real  case  to confirm
applicability  of  the  proposed  metric  in real samples.  It should  be  pointed  out  that  the  proposed  strategy
in  this  work  can  be used  for other  types of comprehensive  two-dimensional  chromatographic  (CTDC)
techniques  like  comprehensive  two  dimensional  liquid  chromatography  (LC  ×  LC).

© 2016  Published  by  Elsevier  B.V.

1. Introduction

Comprehensive two-dimensional chromatographic (CTDC) sys-
tems with multivariate detectors, such as mass spectrometer (i.e.,
GC × GC–MS and LC × LC–MS) have been emerged as a milestone
in chromatographic history. This new insight in chromatography
meets an increasing need for the analysis of complex samples due
to its superior separation efficiency, peak capacity, and enhanced
resolution [1]. In fact, using two independent columns with dif-
ferent polarities, inner diameters, and lengths have remarkably
increased separation power in CTDC [2]. The interface between two
columns, modulator, is a key feature in CTDC owning to transfer
sample from the first column to the second column by taking into
account Giddings’s conservation rules [3]. Among different CTDC
techniques, comprehensive two-dimensional gas chromatography
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(GC × GC) has been proposed as a promising tool for the analysis of
various complex sample matrices. On the other hand, qualitative
and quantitative analysis using GC × GC has been comprehensively
reviewed [4,5]. Different strategies have been proposed for quanti-
tative analysis using CTDC which can be classified into conventional
and multivariate approaches. Actually, quantitative analysis can
be performed by using major selected modulation peaks in sec-
ond chromatographic column. In conventional approaches, two
or three major modulated peaks are selected, and summation of
their areas are considered as a measure for quantification [6,7].
In spite of the validity of this strategy in simple sample matrices,
but, there is no absolute guarantee to select suitable modulated
peaks in complex mixtures due to the presence of different chro-
matographic artifacts and known and/or unknown interferences.
Additionally, modulated peaks at tailings maybe lost because of low
signal-to-noise ratio (S⁄N) [8,9]. Notwithstanding the challenges,
it can be demonstrated that chemometric methods can be used
to exploit pure analyte signal from a complex mixture (second-
order advantage). In this regard, different multivariate resolution
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methods have been proposed for GC × GC data analysis [10–12].
Multivariate curve resolution-alternating least squares (MCR-ALS)
and parallel factor analysis (PARAFAC) are two frequently used
second- and third-order calibration algorithms for GC × GC data
[13]. In addition, n-way partial least squares (NPLS) and unfolded
PLS (UPLS) combined with residual trilinearization (RTL) have been
also reported for GC × GC data analysis [14–17].

In modern analytical chemistry, defining numerical parame-
ters which can help to evaluate the performance of a method or
an instrument is extremely substantial. On this matter, analyti-
cal figures of merit (AFOMs) can be used for this purpose. Using
AFOMs, it is possible to compare performance of different exper-
imental procedures, optimization of a given methodology under
the different experimental conditions, and development of official
protocols for validation and analysis [18–21]. On the other hand,
using multivariate methods to extract information from high-order
data sets, such as GC × GC systems makes it necessary to utilize
multivariate calibration instead of univariate calibration. In this
regard, defining multivariate AFOMs instead of univariate one is
of prime importance. It is imperative to mention that over the past
decade multivariate AFOMs have been developed for hyphenated
chromatographic data [22,23]. However, to the best of our knowl-
edge, multivariate AFOMs have not been developed for CTDC and
especially GC × GC. In the present contribution, multivariate AFOMs
based on uncertainty propagation developed by A.C. Olivieri et al.
[21] was extended to higher-order GC × GC–MS data. The core of
AFOMs definition was SEN and other AFOMs were calculated based
on this figure. On this matter, MCR-ALS and PARAFAC as two  fre-
quently used high-order calibration algorithms for GC × GC–MS
were used to obtain pure component profiles (both chromato-
graphic dimensions and mass spectra), to build calibration curves
and to calculate SEN, and other AFOMs for target analytes. Addition-
ally, a new strategy was developed to estimate the noise level using
variance-covariance matrix of residuals which is very important
to calculate multivariate AFOMs. For this purpose, various two-
component systems with calibrated components in calibration set
and interferences in test set were simulated with different levels
of chromatographic artifacts and random shifts in two  chromato-
graphic columns. Finally, real GC × GC–MS data sets were used to
confirm the validity of the proposed strategy in this work.

2. Theory

2.1. Multivariate AFOMs

As it has been mentioned earlier, applying multivariate resolu-
tion algorithms to extract pure component profiles in second-order
data sets (e.g., GC × GC data set), make it necessary to utilize
multivariate AFOMs rather than univariate ones. Among different
higher-order calibration methods (i.e., second- and third-order cal-
ibration), multi-set and multi-way algorithms have been frequently
used in analytical chemistry. Multi-set algorithms are based on
decomposition of a two-way array to the pure profiles using dif-
ferent objective functions. As an instance, MCR-ALS [24,25] as a
representative of multi-set methods decomposes the data matrix
“X” as follows:

Xaug = CaugST + Eaug (1)

where Xaug(IJ,K) is the augmented CTDC data matrix with I elu-
tion times in first chromatographic column, J elution times in
second chromatographic column as rows and K spectral variables
as columns. Also, Caug(IJ, N) is the matrix of pure first and second
chromatographic profiles, S(N, K) is matrix of pure spectral pro-
files, and N is the number of chemical constituents in the original

matrix (i.e., chemical rank). Eaug(IJ,K) is the error matrix contains
the unmodeled part of data matrix.

On the other side, PARAFAC [26] as a representative of multi-
way analysis algorithms decomposes a multi-way data array X to
three loadings as follows:

X = CBST + E (2)

where X(I × J × K) represents the original multi-way data set,
C(I × N) is the matrix of pure elution profiles in first chromato-
graphic column, B(J × N) is a matrix containing the pure elution
profiles in second chromatographic column and S(K × N) represents
the matrix of pure spectral profiles. In addition, E(I × J × K) is the
unmodeled part of original data array.

Actually, the core of definition of AFOM lies on SEN, which is also
a key parameter in estimation of other AFOMs [27,28]. Moreover,
calculation of multivariate AFOM is algorithm specific. Therefore,
for multiset algorithms (e.g., MCR-ALS), SEN can be defined as fol-
lows [27]:

SEN = mn

[(
STS

)−1

nm

]−1/2
(3)

where n is the index for analyte of interest in a mixture, mn is
the slope of pseudounivariate calibration curve for this analyte
(SEN(m)), ST is the resolved profile for target compound in non-
augmented mode (i.e., spectral profiles).

For multiway algorithms (e.g., PARAFAC), SEN can be defined as
follows [28]:

SEN = mn[nth row of
[(

I − ZunxZ+
unx

)
Zexp]

+]−1
(4)

where n and mn are as before, Zunx and Zexp are defined according
to Eqs. (5) and (6):

Zexp = mn(Cexp � Bexp) (5)

Zunx = [c1 ⊗ Ib|Ic ⊗ b1|c2 ⊗ Ib|Ic ⊗ b2|...] (6)

where Bexp and Cexp are respectively the pure elution profiles in
first and second chromatographic columns for the desired con-
stituents in the calibration set. The profiles b1,b2 and c1, c2 are
the unexpected constituents in first and second elution modes,
respectively. Furthermore, Ib and Ic are identity matrices with
appropriate dimensions, of J × J and K × K, respectively. The num-
ber 1, 2, . . . shows the total number of unexpected constituents.
The symbols � and ⊗ indicate the Khatri-Rao and Kronecker prod-
ucts, respectively [29,30]. In this regard, other multivariate AFOMs,
such as analytical sensitivity (�), selectivity (SEL), limit of detec-
tion (LOD), and limit of quantification (LOQ) can be defined for each
second-order calibration algorithm. As an instance, � for is defined
as follows:

ϒn = SENn⁄�xn (7)

where �xn is uncertainty in instrumental signal, subscript n iden-
tifies a particular analyte of interest. The unit of � is independent
of measured signal which can be employed to compare different
methodologies. In addition, SEL can be defined as a dimension-
less ratio between SEN in the mixture and SEN when all the other
sample constituents are absent [21] (Eq. (8)).

SELn = SENn(in a mixture)⁄SENn(pure) (8)

In another form, SEL can be defined as follows:

SELn = SENn⁄mn (9)

where mn is the slope of pseudounivariate calibration curve. As SEN
is algorithm specific, therefore, the SEL also depends on the type
of SOC algorithm (i.e., multi-set or multi-way). Afterwards, other
important parameters that have to be reported as figures of merit
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