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Abstract

This paper reviews the previous axisymmetric global interpolation functions used in the context of the dual reciprocity boundary element

method and dual reciprocity method of fundamental solutions connected to axisymmetric Laplace operator. It complements our axisymmetric thin

plate splines [1] with the axisymmetric form of the Hardy’s multiquadrics ðr2 Cr2
0Þ

m=2; mZG1. This new functions can be used in the improved

Golberg–Chen–Karur [2] type of approximations. The basic equations are accompanied by a set of related expressions that permit straightforward

use of the developed global interpolation functions in a broad spectrum of dual reciprocity boundary element method and method of fundamental

solutions, and meshless direct collocation like discrete approximate procedures.
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1. Introduction

Axisymmetric geometry and field problems occur very

frequently in science and engineering. The discrete approxi-

mate solutions of the different governing equations in such

situations are of pronounced importance. The fusion of the

boundary element method and global interpolation emerges in

a variety of dual reciprocity (DR) boundary element method

(BEM) discrete approximative procedures [3,4] that give

reasonable evaluations of the governing equations. Two very

comprehensive overviews have been published [5,6] regarding

the use of the different global approximation functions in the

BEM context. However, the mathematical properties of such

methods are nowadays far from being sufficiently understood.

Because of the unresolved theoretical answers to related

existence, uniqueness, convergence, and stability issues, many

numerical experiments and comparisons have been tradition-

ally made in an ad-hoc manner in the DRBEM literature.

The problem of global interpolation outside of the BEM

context has been much more closely investigated

mathematically [7]. Corresponding analyses show that the

use of the radial basis class of functions [8] represents a proper

choice for multidimensional global interpolation. Most of the

related advances focus on the augmented thin plate splines

(ATPS) and multiquadrics (MQ). The ATPS are known to give

the minimized curvature of the interpolation and the MQ could,

depending on the choice of the free parameter, converge very

rapidly. Karur and Ramachadran [9] first gave DRBEM

numerical examples with ATPS and claim a superior solution

to the heuristic ‘one-plus-r’ global approximation functions in

two-dimensional planar problems. Golberg et al. [2] used MQ

in the method of fundamental solutions (DRMFS) variant with

global interpolation. They demonstrate up to three orders of

magnitude of improvement in accuracy over ATPS and ‘one-

plus-r’ functions provided that the free parameter is properly

chosen.

Surprisingly, not many DRBEM solutions structured with

the fundamental solution of the Laplace equation deal with

axisymmetric problems. In the pioneering work concerning

this DRBEM aspect, Wrobel and Telles [10] heuristically use

the global approximation functions of the form
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with the notation elaborated in the next chapter. Masseé and

Marcouiller [11] found this function inadequate and after
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several numerical experiments proposed
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with p0 representing a small positive constant which was set to

0.01.

The axisymmetric form of the scaled augmented thin plate

splines has been developed in [1]. Its successful implemen-

tation and testing in the classical DRBEM is demonstrated in

[12,13] where they appear in the context of solving the

convective–diffusive problems with non-linear boundary

conditions, material properties, and phase-change. These

functions have been in addition used in DRBEM solving of

the temperature field in DC casting of alluminium alloy billets

[14] where they appear in a full-scale industrial context. Chen

et al. [15] developed the solution of the Poisson equation based

on the DRMFS. To make use of the MFS, it is necessary to

calculate a particular solution, which can be subtracted off, so

that the MFS can be used to solve the resulting Laplace

problem. This presents a novel problem, since the axisym-

metric Poisson operator does not have constant coefficients, so

previous methods based on radial basis functions cannot be

used. To overcome this, the source term is approximated by a

two-dimensional polynomial in r and z as in Goldberg et al.

[16]. One can then obtain polynomial particular solutions by

the method of undetermined coefficients.

The principal incitements for this paper are two. The first is

that the axisymmetric ATPS cannot be used in the context of

transport phenomena that extend with one coordinate to

infinity, because they do not decay with growing distance

from the collocation point. Such arrangements are of extreme

importance for example in environmental transport phenom-

ena. The second fact is the fact that the axisymmetric form of

MQ have not been deduced yet and can be applied instead of

polynomials (for example in [15]).

The present paper thus focuses on a relatively complex

derivation of the axisymmetic MQ and related expressions for

use in the spectrum of DRBEM, DRMFS, and Kansa [17,18]

like discrete approximate procedures.

2. Derivation

The interpolation of the scalar function F2R3 with the

three dimensional MQ 3jn could be represented [19,20] in the

following form

FðpÞz3jnðpÞzn; n Z 1; 2;.;N C1; (3)

where p stands for the position vector and N stands for the

number of collocation points. The Einstein summation

convention is used. The NC1 coefficients zn are determined

from the N collocation equations

FðpiÞ Z 3jnðpiÞzn; i Z 1; 2;.;N (4)

and from the constraint

3jNC1
ðpiÞzi Z 0; i Z 1; 2;.;N: (5)

The MQ of interest are
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with

rn Z jrnj; rn Z pKpn; n Z 1; 2;.;N; (10)

where Pn stands for the position vector of collocation point n.

The augmentation function is

3jNC1 Z 1: (11)

The corresponding solutions of Poisson equation in

spherical coordinates
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where RðrnÞhrnC
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p
. However, instead of working

with above functions we prefer to introduce linear combi-

nations 3jn,A and 3jn,B as follows
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with corresponding solutions
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