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Abstract

The simulation of the flow of emulsions in porous media presents formidable challenges, due to the extremely complex evolving

geometry. Methods based on boundary integral equations, suitable for creeping flows, reduce the effort dedicated to geometry

representation, but can become computationally expensive. An efficient indirect boundary integral formulation representing deformable

drops in a bounded Stokes flow, resulting in a set of Fredholm integral equations of the second kind, is presented. The boundary element

method (BEM) based on the formulation employs an accurate numerical integration scheme for the singular kernels involved, an

effective and accurate curvature and normal calculation method, and an adaptive remeshing method to simulate interfacial deformation

of drops. Two benchmark problems are used to assess the accuracy of the method, and to investigate its behavior for large problems. The

method is found to provide accurate results combined with well-posedness, making it suitable for use in accelerated fast multipole

method algorithms.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The low Reynolds number flow of drops in complex
geometries is of interest in many emerging applications, for
example the geological sequestration of CO2, and multi-
phase flows found in various components of fuel cells. In
these cases, the size of the drops may be comparable to the
size of the confining geometry, so that flow of a
homogenized effective fluids is not an appropriate model-
ing avenue. Conversely, phenomena of particular interest
include drop coalescence and breakup, and the interaction
of drops with the confining geometry. While flows of drops
in an unbounded fluid in various conditions have been
studied extensively [1–11,14–24,46–49], confined flows are
less common [12,13,25–33].

In the case of creeping flows with well-defined interfaces,
the governing equations can be cast in the form of integral
equations with boundary-only terms. In such cases,

boundary integral techniques offer important advantages,
principally resulting from the reduced meshing require-
ments. The major disadvantage of the boundary integral
approach, namely the large dense systems that arise from
the discretization of the boundary integral equation (BIE),
has recently been overcome by the application of accelera-
tion methods which reduce the storage and computation
requirements by orders of magnitude [34,35]. One of the
main requirements to ensure the success of such methods is
that the problem is well posed, generally meaning that the
BIE is a regular Fredholm equation of the second kind, i.e.
for which the homogeneous form only admits the trivial
solution. The integral equation presented here is con-
structed to fit this requirement.
The main idea of the indirect formulation is to define an

integral representation formula that produces a well-posed
second kind integral equation, i.e. it is uniquely solvable
and possesses a bounded inverse operator and its analytical
solution is given in terms of a Neumann series (regular or
modified), which is a Picard iteration. Besides, it is well
known that the number of iterations of an iterative
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numerical solution of a well-posed Fredholm equation of
the second kind to fixed precision is bounded and it is
independent of the number of degrees of freedom (for more
details see Greengard et al. [34]).

A major difficulty encountered with the indirect for-
mulation is the necessity of defining a different formulation
for each type of boundary value problem, in order to
obtain a uniquely solvable integral equation of the second
kind, which can be used as the basis of a robust numerical
scheme. Generally this is not straightforward, and to prove
the well-posedness of the resulting integral equation it is
necessary to carry out a formal analysis of the correspond-
ing integral operators.

In what follows, first the construction of the BIE is
discussed in detail, especially in relation to the well-
posedness requirement. The numerical implementation
requires three components, namely accurate numerical
integration, evaluation of surface normals and curvatures,
and adaptive remeshing. The algorithms used to satisfy
each component are discussed in the second part of the
paper, in which novel techniques and adaptations of
existing ones are presented. In the third part, the method
is benchmarked using the bounded flow of a drop in a
container of varying size, and by comparing the flow of a
drop under the action of buoyancy forces with the
corresponding analytical solution. In addition, the perfor-
mance of the various components of the dynamic simula-
tion is studied. Finally, strengths and weaknesses of the
method are discussed and conclusions are drawn.

2. Indirect boundary integral formulation

The schematic of a typical contained flow involving a
carrier fluid and n droplets of immiscible fluid is shown in
Fig. 1. Let G0 denote the surface of the container and O0

the volume of the carrying fluid, Gp the surface of droplet p,
p ¼ 1; . . . ; n, Op the volume enclosed by Gp, and O the
entire volume bounded by G0. Suppose that a velocity field

UðxÞ;x 2 G0 is specified as the boundary condition on the
container surface.
The governing equations for the problem described in

Fig. 1 are the Stokes equations:

qui

qxi

¼ 0;
qsij

qxj

¼ 0, (1)

where

sij ¼
�Pdij þ mðqui=qxj þ quj=qxiÞ; x 2 O0;

�Pdij þ lpmðqui=qxj þ quj=qxiÞ; x 2 Op;

(
(2)

in which lp ¼ mp=m is the ratio of the viscosity of drop p

and the viscosity of the carrier fluid. The boundary
conditions are

uiðxÞ ¼ UiðxÞ; x 2 G0, (3)

½sijðxÞnjðxÞ�S ¼ gpni

qnk

qxk

; x 2 Gp. (4)

Here, ½ �S denotes the jump across the surface of drop p

from the outside O0 to the inside Op, while gp is the
interface tension between the carrier fluid and fluid p.
Surface velocity across each drop surface is continuous, i.e.
½ui�S ¼ 0.
Following standard practice in indirect boundary

integral formulations [36], the velocity field is represented
in terms of a distribution of double-layer densities f on the
container surface and distributions of single-layer densities
c on each of the droplets’ surfaces, resulting in

uiðxÞ ¼

Z
G0

Kijðx; yÞfjðyÞdGy þ
Xn

p¼1

Z
Gp

Qijðx; yÞcjðyÞdGy,

(5)

where the kernels K and Q are defined as

Kijðx; yÞ ¼ �
3

4p

ðxi � yiÞðxj � yjÞðxk � ykÞ

r5
nkðyÞ, (6)

Qijðx; yÞ ¼
1

8p
dij

r
þ
ðxi � yiÞðxj � yjÞ

r3

� �
. (7)

The immediate consequence of this choice of representa-
tion is the continuity of the velocity field across the
droplet—carrier fluid interface. The Stokes equations are
satisfied by setting the pressure field as

PðxÞ ¼ B

Z
G0

1

2p
q
qxj

xk � yk

r3

� �
njðyÞfkðyÞdGy

þ B
Xn

p¼1

Z
Gp

�
1

4p
q
qxk

1

r

� �
ckðyÞdGy, ð8Þ

where

B ¼
m for x 2 O0;

lpm for x 2 Op; p ¼ 1; 2; . . . ; n:

(

It is also noted that each drop may be characterized by an
individual viscosity, although for simplicity a common
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Fig. 1. Typical geometry of drops in a Stokes flow within a container.

Velocities are specified on G0, while each drop is characterized by a

viscosity and a surface tension.
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