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moment matrices in solving the thin-wire EFIE
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Abstract

Multiresolution wavelet expansion technique has been successfully used in the method of moments (MoM), and sparse matrix

equations have been attained. Solving boundary integral equations arising in electromagnetic (EM) problems by the wavelet-based

moment method (WMM) involves a time-consuming double numerical integration for each entry of the resultant matrix which in turn

can outweigh the advantages of achieving a sparse matrix. The paper presents an alternative computational model to speed up the WMM

by excluding double numerical integrations in the evaluation of matrix elements. In this regard, pieces of linear wavelet bases are replaced

by proper sinusoidal functions for which closed-form analytical expressions are available. In addition, by introducing approximate

closed-form expressions for radiating EM fields of wavelet current elements, the thresholding procedure is modified so that one can

compute only the matrix elements of interest. To demonstrate the effectiveness of the proposed method, the thin-wire electric field

integral equation (EFIE) is numerically solved by non-orthogonal linear spline wavelet bases.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The numerical analysis of electromagnetic (EM) pro-
blems is often formulated as differential equations or
boundary integral equations or the combination of them as
integro-differential equations. To numerically solve the
mentioned operator equations, one can initially expand the
unknown response by a set of basis functions. Application
of appropriate boundary conditions, then, reduces the
problem to a matrix equation. In the differential equation
approach, the problem under study is solved by using finite
difference or finite element methods. Although these
methods yield sparse matrix equations, a mesh volume
much larger than the interested region is needed to apply
an absorbing boundary condition [1]. In the integral
equation approach, the computation domain, however, is
exactly limited to the boundaries of the interested region.
The differential equation formulation can be converted

into an integral equation formulation by using Green’s
function technique [2]. In the integral equation approach,
the problem under study is solved by using the boundary
element method (BEM), also known as the method of
moment (MoM) [3], in which a densely populated matrix
equation usually results due to the integral operator.
Recently, the use of wavelet basis functions [4,5] in the

MoM known as the wavelet-based moment method
(WMM) has attracted much attention [6–28]. The use of
wavelets as basis functions in the MoM weakens the
mutual interaction of non-overlapping bases and di-
minishes strong correlation among the expansion coeffi-
cients. This is due to numerous useful intrinsic features of
wavelets, including natural support for multiresolution
analysis (MRA), localization in both the spatial and
spectral domains, and the vanishing moment property
[4,5]. As a result, the WMM yields to a sparse matrix
equation after thresholding [6–28]. Consequently, employ-
ing sparse storage schemes and fast sparse-based iterative
solvers in solving such a sparse matrix equation drastically
reduces the memory requirement and computation time
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[29]. Hence, the merits of sparse matrices attained using the
WMM become more apparent in solving large-scale
problems [6–24].

The wavelet bases have been applied to integral
equations by direct and indirect approaches. In the indirect
approach, the discrete wavelet (packet) transform is
applied to the matrix obtained using the conventional
MoM [7–12]. In the other one, direct approach, shifted and
dilated forms of a scaling function and its corresponding
wavelet are employed as expansion and test functions
[13–28]. Since the direct approach allows to identify prior
location of negligible matrix elements, and thus, to avoid
the evaluation of the full matrix [13–16], it might be more
attractive in practice.

Several wavelet bases have been utilized for solving
integral equations. The simplest wavelets, so-called Flat-
lets, are defined by a set of piecewise constant functions [6].
The well-known Haar wavelet is the simplest example for
Flatlet family. Although Flatlets have the lowest vanishing
moment, as a result of their narrow support and simple
closed-form expression, they offer remarkable improve-
ments [13,26]. Nonetheless, they do not produce a
continuous solution. Actually, the continuous, real-valued
and compactly supported orthonormal wavelet does not
exist [4]. To represent the continuous final solution
smoothly, the orthonormal linear spline Battle–Lemarie
(Franklin) [25,26] and cubic spline Battle–Lemarie wavelets
[13,14] have been used. In many practical EM problems,
however, the solution domain is confined to a bounded
interval, whereas these wavelets are originally defined on
the entire real line extending from �N to +N [6]. Since
amplitudes of the Battle–Lemarie scaling function and
wavelet decay fast, the constraint raised by their infinite
supports can be relieved by truncation so that one can
readily use their periodic version [14]. The periodic
wavelets, however, are not able to describe unknown
functions with non-equal values at the two endpoints of an
interval. Thus, the intervallic wavelets, Daubechies [15] and
Coifman (Coiflet) [16] have been utilized to release the
endpoint restrictions imposed on the periodic wavelets.

The higher the order of vanishing moments is, the
sparser matrices may be attained. The order of vanishing
moments usually increases with smoothness. The higher the
smoothness of wavelets is, however, the longer their
supports in space are. The broader the extent of the
wavelet is, the more computational cost should be paid for
construction of the moment matrix. This constraint may be
removed by the biorthogonal wavelet bases with a number
of different orders of vanishing moments for primal
wavelets and different smoothness for the dual wavelets
[17]. Non-existence of closed-form expression causing the
computation and storage of the interior and numerous
boundary wavelets and scaling functions (i.e., left and right
edges basis functions) degrades the efficiencies of above-
mentioned wavelets.

Semi-orthogonal wavelets for which bases in the same
subspace do not have orthogonality, are constructed by

cardinal B-spline functions especially for bounded intervals
[5]. Moreover, they have all desirable properties including
compact support, closed-form, symmetry, total positivity
and small optimal value of space-frequency window
product together [18]. Among various types of semi-
orthogonal wavelets, the linear one which is continuous
up to first-order derivative, and thus, has second-order
vanishing moments, is widely used in computational EMs
[18–27]. This is due to the fact that using smoother wavelets
with higher order of vanishing moments although slightly
increases the sparsity of the resultant matrix; it causes
larger support in space for wavelets which in turn increases
the computational burden in construction of the matrix. As
an example, Coifman wavelet with zero moment for its
scaling function, covers at least 11 adjacent length scales
[16]. In this paper, the compactly supported non-orthogo-
nal linear spline (NLS) wavelet with two vanishing
moments [28] is chosen, since its scaling function and
wavelet not only possess all eminent features of the semi-
orthogonal one, but they also have the minimal support
and occupy only two length scales in each resolution level.
Owing to the use of hybrid basis functions in various

resolution levels, high computational cost of matrix fill
process become more apparent in the WMM than that in
the conventional MoM. In fact, even for the piecewise
linear wavelets, consisting of linear functions, the time-
consuming double numerical integrations in evaluation of
dominant matrix entries still outweigh the advantages of
achieving sparse matrix in the direct approach. Alterna-
tively, piecewise sinusoidal basis functions are commonly
used in the conventional MoM to take the efficiency of
closed-form integration [30–37].
The objective of this paper is to speed up the construc-

tion of sparse matrices in the WMM. In this regard, in
order to directly determine the majority of dominant
matrix elements without performing two-fold Gaussian
quadrature procedures, each piece of NLS wavelet bases is
individually replaced by an appropriate sinusoidal function
for which closed-form analytical expressions are available.
In addition, the paper presents closed-form expressions for
radiated EM fields of wavelet current elements by which
one can not only evaluate the left dominant matrix entries
with performing just single numerical integrations, but also
compute the left single numerical integrations only for the
entries of interest even without any knowledge about the
sparse structure of the resulting matrix. Note that, in most
previous applications of wavelets, the coefficient matrix is
calculated as a whole before being thinned by a threshold-
ing procedure.
The remainder of the paper is organized as follows. The

next section presents a summery of the thin-wire electric
field integral equation (EFIE) formulation. In Section 3,
first, the multiresolution wavelet expansion method is
reviewed briefly, followed by the general formulation
of the WMM. An appropriate piecewise linear wavelet
basis choice is, then, selected to better illustrate the
new computational model. In Section 4, the sinusoidal
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